
APPENDIX C

SAGE EXERCISES

By Dan Shumow
University of Washington

C.1 Getting Started With Sage . C-2

C.2 Programming With Sage . C-4

Input to the Interpreter . C-4
Data Types . C-4
Mathematical Operators . C-6
Control Statements . C-6
Functions . C-7

C.3 Chapter 2: Classical Encryption . C-8

C.4 Chapter 3: Block Ciphers And The Data Encryption Standard C-9

C.5 Chapter 4: Basic Concepts In Number Theory And Finite Fields C-10

C.6 Chapter 5: Advanced Encryption Standard . C-12

C.7 Chapter 6: Pseudorandom Number Generation And Stream Ciphers . . C-13

C.8 Chapter 8: Number Theory . C-14

C.9 Chapter 9: Public-Key Cryptography And RSA . C-18

C.10 Chapter 10: Other Public-Key Cryptosystems . C-19

C.11 Chapter 11: Cryptographic Hash Functions . C-22

C.12 Chapter 13: Digital Signatures . C-22

C-1

Z03_STAL7044_05_SE_APPC.QXD 12/4/09 1:54 PM Page C-1

C-2 APPENDIX C / SAGE EXERCISES

This appendix contains a number of exercises that reinforce cryptographic concepts,
organized by the chapter in which those concepts were discussed. All the exercises
use Sage. We begin with a discussion of how to get started using Sage and a brief
introduction to the syntax and operations.

C.1 GETTING STARTED WITH SAGE

Sage is a free open source program that collects many open source math packages
into one easily usable environment.

The following are step-by-step instructions to installing and getting started
using Sage for the examples and exercises in this book.1

1. Go to http://www.sagemath.org/download/
2. You have two options:

a. Building from source: If you are well versed in compilers and building soft-
ware, you can build from source. Select this option.

b. Installing Binaries: You can install precompiled binaries, the process is dif-
ferent on several different operating systems.

• Linux Download the Linux binaries, download, and follow the instructions
in the README file.

• Mac OS X Download the Mac OS X binaries and follow the instructions in
the README file.

• Windows: With Windows the process is a little bit more complicated. At the
time of printing the only complete option for Sage on Windows requires
running ubuntu in a virtual machine. The directions are contained in the
windows section of the download. However, copied here for reference they
are:
i) Download the VMWare player: http://www.vmware.com/products/player/

(this is a free download for students / educators.)
ii) Download the VMWare image from the Sage website and follow the

directions in the README file.
There is also a native port of windows, in progress, at the time of this
printing. You can try it and see if it works for your purposes at:
http://windows.sagemath.com

3. Once you have Sage installed, On Linux or Mac OS X you can just type Sage
from a shell prompt and it will run the interpreter (if you installed the
Sage script in the correct location, as in the README files.) On windows, you
run Sage by starting the VMWare player to open the Sage virtual hard drive.
Once the VMWare player is started, you can use the player to enter data into
the command line, you can SSH to your virtual machine (useful for copy and
paste functionality) and use the notebook.

4. Sage also has notebook functionality, similar to that of Maple or Mathemati-
ca worksheets. This runs through the web browser. On Linux and Mac OS X,

1Please note that Sage is an open source package that is constantly under development, and much func-
tionality changes from release to release. If any of the steps in this section do not work, please check
http://www.sagemath.org for new up-to-date information.

Z03_STAL7044_05_SE_APPC.QXD 12/4/09 1:54 PM Page C-2

C.1 / GETTING STARTED WITH SAGE C-3

you start the notebook by typing notebook() from the command prompt, or
by running Sage with the -notebook argument. In the VMWare image, this is
run by selecting notebook from the login options when the VMWare image
starts up.

5. If you wish to execute the Sage examples from Appendix B, you can now
download the relevant Sage files.2 If you are using a Linux or Mac OS X
machine, then you just download your files to a folder and run Sage to access
them. However, if you are using the VMWare player then you need to get the
files into your virtual machine. This can be done using the shared folder’s
option in VMWare player, or copying the files using wget or scp from inside
the virtual machine. You can access the underlying Ubuntu operating system
in the Sage virtual machine by selecting the manage option when the VMWare
image starts up.

6. As mentioned in step 3, Sage is an interpreted language, and you interact with
it through a prompt. However you can also write batch scripts.These files have
the suffix .sage and each line is a line that you would type into the interpreter.
You can load these into the interpreter by using the “load” and “attach”
commands. The command “load” runs the file once. On the other hand, the
command “attach” monitors the underlying .sage file and reloads it if there are
any changes.

7. The Sage interpreter keeps track of your underlying path, running attach and
load is relative to this path. You can change the current path by using ‘cd’ like
you would in a shell. Suppose that you want to run a file example.sage, you can
do this by typing:

load example.sage

While the current directory of the Sage interpreter is the directory containing
example.sage.

There is significantly more information and documentation on Sage and how
to run it at http://www.sagemath.org/doc. This page includes a tutorial, a reference
manual, a Sage programmer’s manual, and an installation guide. See this documen-
tation for the most up to date information on Sage. Even more documentation and
help is available at http://www.sagemath.org/help.html. Particularly worthwhile is
the downloadable book Sage for Newbies.

Sage is a rich, powerful facility, and the amount of documentation may seem
overwhelming. However, if you study the examples in Appendix B and the discus-
sion in this section and the next, you should be able to write Sage code to solve the
problems with little reference to the documentation. Furthermore, any time devoted
to learning Sage is a worthwhile investment, because Sage is a general-purpose
mathematical tool that you will be able to use throughout your academic and
professional career.

2All of the Sage code in Appendix B is available online at this book’s Web site in .sage files, so that you
can load and execute the programs if you wish. See Preface for access information.

Z03_STAL7044_05_SE_APPC.QXD 12/4/09 1:54 PM Page C-3

C-4 APPENDIX C / SAGE EXERCISES

C.2 PROGRAMMING WITH SAGE

The following is a basic introduction to Sage programming. Sage is a collection of
open source mathematics packages that are loaded into a Python interpreter. Input
to Sage is lightly preprocessed and sent to a Python interpreter. Thus, all program-
ming in Sage is essentially just Python programming. Readers familiar with Python
can skip much of this section, however Sage does modify the Python environment
some, so reading some of the sections especially about numeric data types may be
useful. The following are some of the basic Sage programming constructs.3

Input to the Interpreter

Python is an interpreted language, so you can interact with the program line by line.
Python is object-oriented, so as long as you are not using built in data types, you

can use the following technique to learn about the member functions and variables
of the class you are working with. Suppose foo is a variable of FooClass type, then
typing foo.<tab>, (<tab> means, hit tab) will auto complete. If you begin typing the
name of a variable, hitting tab will list all members that start with what you have
already typed, if there is only one such member, it will autocomplete.

Suppose foo has a member bar, to learn about this member, you can type
foo.bar? and hit enter, this will display documentation on the function bar if it
exists. You can also type foo.bar?? and hit enter to display the documentation
and the source code.

You can also use the print function to try to print a Sage object. So if foo is some
variable, the expression print foo will try to convert foo into a string and print it.

Also the function type(foo) will return the type of the variable foo, which is
also useful.

Data Types

One basic data type is Str.This is the built-in data type for strings in Python.They are
entered into the interpreter by putting a literal string in single quotes '' or double
quotes "". These are sequential, and can be accessed as such. For example if foo =
'foo', then foo[0] = 'f' and foo[1]='o'.

Sage provides the following numeric data types.

• int: This is the built-in, fixed precision signed integer data type of Python.
This is the default data type used to access sequential data (like tuples and
lists) as well as the default loop counter.

• long: This is the built-in, arbitrary precision integer data type of Python. If an
operation on operands of type int overflows, the result will be a long.

• Integer: This is a Sage data type that implements arbitrary precision
integers. This is the default type ascribed to integers typed into the Sage
interpreter. The object for the integers is ZZ. Variables of type int or long
can be cast to an Integer as follows, if foo is an int or a long then
ZZ(foo) casts foo to an Integer. (Integer(foo) will work as well.)

3Note that Sage does change from release to release, so be sure to check http://www.sagemath.org/doc for
the most up to date documentation.

Z03_STAL7044_05_SE_APPC.QXD 12/4/09 1:54 PM Page C-4

C.2 / PROGRAMMING WITH SAGE C-5

• Rational: This is the Sage data type that implements arbitrary precision
rational numbers. If you type something like 2/3 into the Sage interpreter, this is
the default type that the value will be given.The object for the rational numbers
is QQ. Variables of type int, long, or Integer can be cast to a Rational as
follows, if foo is such a numeric type, then QQ(foo) casts foo to a Rational.
(Rational(foo) will work as well.) This is important to bear in mind, as in
many programming languages 2/3 would evaluate to the integer 0.

Two important sequential data types in Sage are list and tuple. The list
type is the built-in Sage type for lists (arrays). The syntax for lists is an open and
close square brackets, with items separated by commas.

• The empty list is

foo = []

• A list of the first three integers is

foo = [1, 2, 3]

• A list of some different types is

foo = [‘2/3’, 2, 2/3]

The first element is a string, the second is an Integer and the third is a
Rational.

The function range([start,] end) returns the list of integers from start
through end-1. If start is omitted 0 is assumed. Also, you can initiate a list with a
variable number of arguments explicitly by doing:

foo = [<expression in j> for j in xrange(M)]

Where M is some integral data type, and <expression in j> is some Python
expression that is allowed to reference the loop counter j. You access list elements
by square brackets after the name of the variable, so foo[i] returns the ith
element of a list. Lists are mutable, so you can assign values to the elements as
follows: foo[i] = bar. You can also extend lists by using the append function, as
in: foo.append(bar). You can get a length of a list with the built in function
len(...), by calling it as len(foo).

The tuple data type is the built in Sage type for immutable lists of elements.
They syntax is like that for lists but parenthesis are used instead of square brackets.
As with the examples for lists:

• The empty tuple is

foo = ()

• A tuple of the first three integers is

foo = (1, 2, 3)

• A tuple of some different types is

foo = (‘2/3’, 2, 2/3)

Z03_STAL7044_05_SE_APPC.QXD 12/4/09 1:54 PM Page C-5

C-6 APPENDIX C / SAGE EXERCISES

Tuples are accessed just as lists, so foo[i] returns the ith element of the tuple foo.
As mentioned, tuples are immutable, so you cannot assign values to the elements
after the tuple has been initialized.

Mathematical Operators

The usual mathematical operators work in Sage. So, , , and * all work as you
would expect. As noted above / performs division, but if the operands are integers it
promotes them to rational numbers. The % operator performs modular reduction a
% n is the remainder of divided by , for and integral data types. You can
accomplish integral division as follows. If is an integer, and you want the quotient
and remainder after division by , a.quo_rem(n) returns a tuple (q,r) where q
is the quotient and r is the remainder.

One of the major differences between Sage and Python is that the operator
is not xor, as it is in Python. Rather, this means exponentiation. So a^n is

raised to the th power. Alternately, this can be performed with the ** operator as
a**n.

Control Statements

If-else statements are written as follows:

if <boolean statement> :
<tab> <block of code>
elif <boolean statement> :
<tab> <block of code>
else:
<tab> <block of code>

Where <boolean statement> indicates a valid statement in Python that
evaluates to a Boolean expression, and <block of code> indicates a multi-line
block of Python code. It is important to note that with if statements (and also loop
statements), the blocks of code must be indented, and the subsequent control state-
ment must return to the original level of indentation. This is how the interpreter
knows how to match if elif and else statements. In the if and elif statements, the
Boolean expression must be followed by a semicolon. For else statements the semi-
colon immediately follows the keyword else. For the Boolean statements the stan-
dard operators of Boolean (and, or) are spelled out exactly as ‘and’ and ‘or’. Meaning
for a number less than 0 and greater than 3 one writes:(x < 0) or (3 < x). For
a number greater than 0 and less than 3 one writes:(0 < x) and (x < 3).

The syntax for a for loop is as follows:

for <variable> in <iteratable object>:
<tab> <block of code>

In Python <iteratable objects> are sequential objects like lists or tuples
(there are some others as well, but lists and tuples are the main case.) For example

n
a¿

n
a

nana

-+

Z03_STAL7044_05_SE_APPC.QXD 12/4/09 1:54 PM Page C-6

C.2 / PROGRAMMING WITH SAGE C-7

for A in foo:
print A

prints the list of the elements in the list foo. Or

for j in range(10):
print j

prints the integers from 1 to 10.
The most common exception to using a list or a tuple as an iterable object is

iterating through a list of integers using the xrange function. For example:

for j in xrange(len(foo)):
print ‘j=’, j, foo[j]

prints a list of the indices and the elements at that index in the array.
The xrange function allows loops to iterate through the integers [0, 1,

..., (len(foo)–1)] without instantiating the list as the function range would.
The function xrange takes the parameters are the same as the range function does,
the only difference is the output.

While loops have the syntax:

while <boolean expression> :
<tab> <block of code>

For example:

while (x < 1):
y = y + x
x = x/2

With both while and for loops, the break keyword cause execution of the loop
to stop, and continue causes control to begin executing at the next iteration of the
loop.

Functions

Creating functions is very easy:

def <function-name>(< comma separated list of parame-
ters>):
<tab> <block of code>

Just like control statements, the body of the function must be delimited by in-
dentation. The return statement specifies the value of the function to return. If

Z03_STAL7044_05_SE_APPC.QXD 12/4/09 1:54 PM Page C-7

C-8 APPENDIX C / SAGE EXERCISES

the function does not have a return statement, or the end of the body of the func-
tion is reached without hitting a return statement, then the function returns the
value None. For example, the following function:

def f1(x, y):
if (0 == x % 2):
z = x^2 + x + 1

else:
z = x-y

return y

For more information on Python programming, see http://www.Python.org/.At this time
Sage uses Python 2.x,and not Python 3.0 or higher.This is not likely to change,but as the
differences in the language are significant, if the examples here are not working, it may
be worth checking out if the underlying version of Python that Sage uses has changed.

C.3 CHAPTER 2: CLASSICAL ENCRYPTION

2.1 Implement Sage functions that perform affine cipher encryption/decryption,
given a key that consists of a pair of integers , both in with not
divisible by 2 or 13. The functions should work on strings, and leave any non-
alphabetic characters unchanged. Show the operation of your functions on an
example. See problem 2.1 in Chapter 2 for a definition of an affine cipher.

2.2 This question is to implement some functions useful to performing classical
cipher attacks.
a. Implement a Sage function that performs frequency attacks on a mono-

alphabetic substitution ciphers. This function should take a ciphertext string,
compute a histogram of the incidence of each letter (ignoring all non alpha-
bet characters), and return a list of pairs (letter, incidence percentage)
sorted by incidence percentage.

b. Implement a Sage function that takes a partial mono-alphabetic substitution
and a ciphertext and returns a potential plaintext. The partial mono-alpha-
betic substitution should be specified as follows: As a 26 character string
where the character at position i is the substitution of ith character of the
alphabet, OR an underscore ‘_’ if the corresponding substitution is unknown.
The potential plaintext should be the ciphertext with values specified by
the mono-alphabetic substitution replaced by the lower-case plaintext. If the
corresponding character is unknown (i.e. ‘_’ in the monoalphabetic substitu-
tion cipher) print the cipher text as an uppercase character.)

c. Use your functions from (a) and (b) to decrypt the following ciphertext:
“ztmn pxtne cfa peqef kecnp cjt tmn zcwsenp ontmjsw ztnws tf wsvp
xtfwvfefw, c feb fcwvtf, xtfxevqea vf gvoenwk, cfa aeavxcwea wt wse
rntrtpvwvtf wscw cgg lef cne xnecwea eymcg.”

2.3 Implement Sage functions to perform encryption/decryption with Hill
Cipher. The key should be an invertible Sage matrix over the integers mod 26.

2 * 2

a{1, 2, . . , 25}a, b

Z03_STAL7044_05_SE_APPC.QXD 12/4/09 1:54 PM Page C-8

C.4 / BLOCK CIPHERS AND THE DATA ENCRYPTION STANDARD C-9

Do not just call the built in Sage functionality for the Hill cipher. Show the
operation of your functions on a plaintext of your choice.

2.4 Implement a Sage function to perform encryption/decryption with an Hill
Cipher.The key should be an invertible Sage matrix over the integers mod 26. Do
not just call the built in Sage functionality for the Hill cipher. Show the operation
of your function on the functions you write on a plaintext of your choice.You may
use any functions you wrote for the previous question to answer this question.

2.5 This question is to implement and use a known plaintext attack on the Hill
cipher.You may use functions from examples or previous questions, but do not
use the built in Sage functions for the Hill Cipher. [Hint: The built in functions
for MatrixSpace and FreeModule objects may be useful, but if they are too
confusing to use, do not get caught up on them.]
a. Implement a known plaintext attack on the hill cipher.
b. Use the function that you wrote in part (a) to attack the following plaintext/

ciphertext pairs:
plaintext = "friday" ciphertext = "izrvey"
plaintext = "diamondisinstatue" ciphertext = "zisxlhdiwdingthyqq"
plaintext = "thesecretdietistofuhotdogs" ciphertext = "qbayzelwilksscipqps

vkafvssyy"

C.4 CHAPTER 3: BLOCK CIPHERS AND THE DATA
ENCRYPTION STANDARD

3.1 This problem references the Sage implementation from Appendix B.3 Example 1.
a. Copy the diagram of the function of the Simplified DES Encryption details

(Figure G.3 in Appendix G) and label each wire with the corresponding vari-
able name from the Sage code that implements SDES Encryption.

b. Copy the diagram of the Simplified DES Encryption Key Generation
(Figure G.2) and label each wire with the corresponding variable names
from the Sage code that implements the SDES Key Generation.

3.2 a. Let temp_block denote a Sage variable that contains the output of the first
application of function (in the Sage example code) while encrypting
with Simplified DES. Using subroutines from the example Sage code, write
Sage code to recover the input block passed to Simplified DES Decrypt.
That is, reverse the first steps in Simplified DES Encrypt. You may assume
that you have the first round key in a variable K1.

b. Using subroutines from the Sage example code for Simplified DES, write a
function to compute Simplified DES Decrypt.

3.3 a. Consider EP, the expansion permutation. Find an inverse contraction
permutation. That is, find a function that takes 8 bits down to 4 and inverts
EP. Note that these are not unique. Implement this function EPinv as in the
example Sage code.

b. Take the function f_K from the example Sage code and modify it so that
instead of calling the SBoxes, it calls EPinv after the round key is XORed
in. Rename the modified function f_K_NoSBox.

c. Modify the functions SDESEncrypt [see example Sage code], and SDES-
Decrypt (see question 3.1] so that they then call f_K_NoSBox (from

fKfK

fK

m * m

Z03_STAL7044_05_SE_APPC.QXD 12/4/09 1:54 PM Page C-9

C-10 APPENDIX C / SAGE EXERCISES

part b). Call the new functions SDESEncryptNoSBox and SDESDe-
cryptNoSBox.

d. Do these new functions function as Encrypt/Decrypt functions of each
other? (i.e. will SDESDecryptNoSBox give you back the input of SDES-
EncryptNoSBox, given that they are using the same key)?

e. Does SDESEncryptNoSBox make a good Encryption function, why or why
not? Hint: Can you mount a known or chosen plaintext attack on the func-
tions you wrote in part (d)?

C.5 CHAPTER 4: BASIC CONCEPTS IN NUMBER THEORY AND
FINITE FIELDS

4.1 In the examples functions for the Euclidean and extended Euclidean GCD,
the first input must be greater than the second. Furthermore, each argument
must be a positive integer. Implement these functions such that these assump-
tions need not be made about the input. Also for the extended Euclidean
GCD, if the gcd of and is 1, return inverse mod and inverse mod
(Your Sage functions may call the example Sage functions, or you may write
these implementations from scratch. Do not merely call the built in Sage func-
tionality.) Show your functions work on a few inputs.

4.2 Suppose that polynomials are represented by lists of coefficients, where the
coefficient at index is the coefficient of . Using this representation, write
Sage functions that perform the following polynomial operations (don’t just
call the underlying Sage functions):
a. Scalar multiply, given a scalar , and a polynomial , computes .
b. Addition, given two polynomials , , computes .
c. Subtraction, given two polynomials , computes .
d. Multiplication, given two polynomials , computes .
e. For each of the above functions that you wrote show the output of the func-

tion on 1 set of inputs.
4.3 Either using the functions you wrote in the preceding question or the built in

polynomial arithmetic in Sage, as well as, either the given polynomial extend-
ed gcd, or the built in Sage extended gcd, implement a four function calculator
for with modulus . Consider elements of to be
degree 4 (fixed precision) polynomials in the primitive element, i.e.,
elements are represented by lists of 4 binary values. You may use the underly-
ing polynomial functions in Sage, or any functions you wrote for the previous
questions.
a. addition
b. scalar multiplication
c. multiplication
d. inversion

4.4 This question asks about using the Sage functionality for computing in Finite
Fields.
a. Use Sage to create a finite field with 17 elements. In this field calculate:

The difference: 13 - 16

GF(24),
GF(24)x4 + x + 1GF(24)

h = f*ggf
h = f - ggf

h = f + ggf
c # ffc

xii

abbaba

Z03_STAL7044_05_SE_APPC.QXD 12/4/09 1:54 PM Page C-10

C.5 / BASIC CONCEPTS IN NUMBER THEORY AND FINITE FIELDS C-11

The sum:
The quotient:
The product:
The multiplicative inverse of: 5

b. Use Sage to create a finite field with 32 elements. Let 'a' denote the primi-
tive element. In this field Calculate:
The difference:
The multiplicative inverse of:
The quotient

c. Use Sage to create a finite field with elements. Let 'alpha' denote the
primitive element. In this field Calculate:
The sum:
The multiplicative inverse of:
The product:

d. Use Sage to create a finite field with 503,777,509 elements. In this field
calculate:
The quotient: 123,456,789/456,555,333
The multiplicative inverse of : 987,654,321
The difference: 789,123,456 - 444,333,111

4.5 This question is to use the built-in gcd functionality of Sage.
a. Using the gcd functionality in Sage, compute the greatest common divisor of

24 and 300
4567 and 4731907
100 and 1015

b. Using the xgcd functionality in Sage, compute the extended greatest com-
mon divisor
36 and 624
4321 and 9226177
45 and 12345

c. Find two numbers, both greater than 100,000 that have a greatest common
divisor of exactly 3.
Show the output of Sage that verifies your answer is correct.

4.6 The purpose of this question is to show familiarity with the Sage polynomial
arithmetic functionality.
a. Use Sage to initialize a polynomial ring over the field with two elements.

Let and . Compute , the
quotient and remainder of g divided by f, and the greatest common divisor
of f and g.

b. Use Sage to initialize a polynomial ring over the field with 31 elements. Let
and . Compute ,

, the quotient and remainder of dividing f by g, and the greatest common
divisor of f and g.

c. Use the function to initialize a finite field with 16 elements, and
suppose that a is the generator of this field.Then initialize a polynomial ring
over this field. Compute the quotient and remainder of dividing

by
*x + a¿2(a¿3 + 1)

(a)x¿2 +(a¿3 + a + 1)x¿4 + a*x¿2 + (a¿2 + a)*x + (a + 1)

GF(Á)

f*g
f - gg = x¿3 + 10*x¿2 + 24*x + 3f = x¿5 + 17*x + 13

f + g, f *gg = x¿3 + x¿2 + x + 1f = x¿2 + 1

1alpha + 22*1alpha + 32(alpha + 1)
(3*alpha¿2 + 4*alpha) - (alpha¿2 + 3)

5¿3(a¿2 + 1)/(a¿4 + a + 1)
a¿4 + a + 1

(a¿2 + a) - (a + 1)

3 * 8
1/2

11 + 10

Z03_STAL7044_05_SE_APPC.QXD 12/4/09 1:54 PM Page C-11

C-12 APPENDIX C / SAGE EXERCISES

d. In Sage initialize a degree 3 extension of the finite field with 5 elements
with defining polynomial . Further suppose that ’theta’ is the
primitive element of this field. Compute 1/theta.

C.6 CHAPTER 5:ADVANCED ENCRYPTION STANDARD

5.1 The purpose of this question is to become more familiar with the algorithm for
generating the Simplified AES S-Box. Each part of this problem is to write
one part of the algorithm in Sage, and in the last part put them all together.
The construction closely follows the description of the algorithm specification
in the text.
a. Consider the positive integers between 0 and 15 (inclusive) as 4 bit strings,

so that 3 is 1100 (this ordering is known as little endian.) Define the map-
ping from to by mapping the element with bit string

to the element of . The following
snippet of Sage code sets F to the finite field with two elements L the finite
field with 16 elements (extension of F with modulus) and prim-
itive element a (we use a here because a is a special value in Sage.) And V is
the vector space of dimension 4 over F (you can think of this as 4 bit strings
with addition defined on them.)

F = GF(2);
L.<a> = GF(2 4);
V = L.vector_space();

As in the example code for Simplified AES we can map a bit list b to the
corresponding element of L by L(V(b)). Write a Sage function that maps a
positive integer in to an element of L. (Hint: If is a Sage
Integer, .bits() is a little-endian list of the bits of , however z only has as
many elements as the bit length of z. So, for example if is 0, this function
returns an empty list. However, L(V(b)) only works if b is a bit list of length
4. You will have to work around this.)

b. Use the function from part (a) to write a Sage function to initialize a 2 dimen-
sional array (either a list of lists or a matrix over L) so that the element at
position is the element of mapped to by .

c. Write a function that takes M, a 2-dimensional array of elements in
(either a list of lists or a matrix over L) and maps each nonze-

ro element to its inverse and 0 to 0. That is, your function should return M',
the 2-dimensional array of elements in L where the element at row and
column of M' is the inverse of (or 0 if). (Hint: If is a nonze-
ro element of L, in Sage, is the multiplicative inverse of . If is zero,
this will raise an error.)

d. Write a function that takes a 2-dimensional array of elements in
and for each element converts it to an element of V and

applies the Linear transformation in step 4 of the S-Box generation
algorithm. Then returns the resulting 2-dimensional array. The Sage code to
initialize A and b would be:

L = GF(24)

zzz¿(-1)
zMrc = 0Mrcc

r

L = GF(24)

4r + cGF(24)(r, c)

z
zz

x{0, 1, 2, Á , 15}

¿

a4 + a + 1

GF(24)b0 + b1a + b2a2 + b3a3b0 b1 b2 b3

GF(24){0, 1, 2, Á , 15}

x¿3 + x + 4

Z03_STAL7044_05_SE_APPC.QXD 12/4/09 1:54 PM Page C-12

C.7 / PSEUDORANDOM NUMBER GENERATION AND STREAM CIPHERS C-13

A = Matrix(F, [
[1, 0, 1, 1],
[1, 1, 0, 1],
[1, 1, 1, 0],
[0, 1, 1, 1]]);

b = V([1, 0, 0, 1]);

And the linear equation is . Then take the resulting element of V
and map it back to an element of L (if v is an element of V, then L(v) is the
corresponding element of L.) (Hint: If z is an element of L and v = z.vec-
tor(), the linear transformation as is defined in the algorithm expects that
the bits of v are reverse of how Sage orders them. To deal with this, you will
either have to reverse the bits of v, or appropriately modify the A matrix.)

e. Use the functions you just wrote to write a function that initializes the SBox
matrix for simplified DES. Check your answer versus the SBoxes of the
simplified AES function in the book.

5.2 In the previous question we computed the SBox for Simplified DES.There are
multiple ways to compute the inverse SBox. You can find each element of L in
the SBox and figure out which element maps to it. Or you can reverse each of
the steps in the previous algorithm. Write a Sage function to calculate the
inverse SBox matrix.

5.3 The algorithm for computing the Simplified AES SBox table does exactly that,
it computes a table. However, this algorithm shows us how we can compute the
SBox directly, without doing a table look up.Write a Sage function to compute
the Simplified AES SBox and Inverse SBox directly. Meaning, write functions
that take elements of L and return the element of L that the SBox table (or
Inverse SBox) lookup would map to. (This is more than a textbook exercise.
Some people consider the AES SBox lookups to be insecure because they can
leak information through the cache. Such vulnerabilities are called Side Chan-
nels. Computing SBoxes without lookups is one way to mitigate this type of
attack. Although there is a conditional statement in this SBox computation,
which could be exploited by a side channel attack.)

C.7 CHAPTER 6: PSEUDORANDOM NUMBER GENERATION
AND STREAM CIPHERS

6.1 (With regard to the code for this exercise, see www.pearsonhighered.com/
stallings) Breaking Blum Blum Shub is provably (polynomial time) equivalent
to factoring.While this question does not prove this, it does show how to create
a Sage function that gives considerable evidence for this fact. Specifically, we
will show that given a function that gives you the previous Blum Blum Shub
state from a Blum Blum Shub state, that we can write a probabilistic program
that factors. The following function will break Blum Blum Shub (for small):

def previous_BBS_state(state):
r"""
This function returns the previous Blum-

BlumShub state.

N

A*v + b

Z03_STAL7044_05_SE_APPC.QXD 12/4/09 1:54 PM Page C-13

C-14 APPENDIX C / SAGE EXERCISES

Note that this is a toy function and will only
work on small N.
"""

N = state[0];
R = IntegerModRing(N);
X = R(state[1]);

if (not X.is_square()):
print "Not a valid Blum-Blum-Shub RNG
state."
return None

return [N, X.sqrt().lift()];

a. The first part of the problem is to notice that if you have integers such
that (mod) and mod , then the usual difference
of squares equation gives that . And so we can
hope that gcd ,) or gcd yield a nontrivial factor of .
Write a Sage function that takes such that (mod) and

mod and tries to find a nontrivial factor of .
b. Using the function you wrote in part (a) and the supplied function previ-

ous_BBS_state, write a function that takes a number (that is a product of
two primes both congruent to 3 mod 4) and returns the factors and .
[Hint: you have to create your own BBS state, so you will have to choose your
square. How do you choose a square such that you know you have , ?]

6.2 Write a Sage function that takes 3 successive outputs from a linear congruen-
tial RNG, as well as the modulus of the internal state, that returns and
OR indicates that it cannot find these values. Generate a linear congruential
state, and 3 successive outputs and show your function working.

6.3 The purpose of this function is to become more familiar with the ANSI X9.17
PRNG. For this problem you may use any solutions to other problems, or
example code.
a. Implement a function for a variant of the ANSI X9.17 PRNG using the sim-

plified DES block encrypt, instead of two key triple-DES. Your function
should take the current state (the seed, V, and the date/time, DT, variables
as 8 bit long bit lists) as well as the SDES key as a 10 bit long bit list. Note
that because this function uses SDES, instead of two key triple DES, you do
not need two keys.

b. Implement a function for ANSI X9.17 PRNG using the simplified AES
block encrypt. Your function should take the current state (the seed, V, and
the date/time, DT, variables as 16 bit long bit lists) as well as a key as 16 bit
long bit lists. Note that because this function uses SAES, instead of two key
triple DES, you do not need two keys.

C.8 CHAPTER 8: NUMBER THEORY

8.1 Write a Sage function to implement Euler’s Totient function [Hint: You may
find the Sage “factor” function useful here.]

cam

yx

qpp, q
N

NN(x2 - y2) = 0
NxZ ;yx,y

N(x + y, N)N(x - y
(x2 - y2) = (x - y)(x + y)

N(x2 - y2) = 0Nx Z ;y
x, y

Z03_STAL7044_05_SE_APPC.QXD 12/4/09 1:54 PM Page C-14

C.8 / NUMBER THEORY C-15

8.2 Note that the sample code for the Miller Rabin test returns True if the test
finds, conclusively, that is composite, otherwise the function returns False to
indicate that the function did not find anything conclusively. As noted in this
book, we can decide with high probability if is prime or composite if we run
this test multiple times. This exercise is to implement a version of the Miller
Rabin test that does so.
a. Implement a function that performs the “witness procedure” of Miller

Rabin, that is, the code that checks whether or not an integer in
has the specified properties.

b. Use the function that you wrote for part (a) to implement a function that
takes a positive integer , and a list of integers in
and performs the “witness procedure” on each one. If any one of these de-
termines that a is composite, then return False (to indicate a is composite)
otherwise return True, to indicate that (with high probability) is prime.

8.3 Previously we saw that factoring can be reduced to breaking Blum Blum
Shub’s security. In this problem we will see the other direction, namely that
Blum Blum Shub’s security can be broken by factoring. For this problem you
may use the fact that finding a square root mod a prime is a solved problem. In
fact if (mod 4) and is a square mod then the square root of is given
by mod . Either use this formula or the built in Sage functionality to
compute square roots in a prime field to write a function that takes a Blum
Blum Shub internal state, and the two prime factors (both 3 mod 4) of the
modulus, and outputs a list of at most 4 possibilities for the previous Blum
Blum Shub State. Generate a Blum Blum Shub state (with your own) and
show that your function works. [Hint: use the CRT.]

8.4 Sage has a command "time" that works similar to "print." Specifically "time <expr>"
runs the expression <expr> and displays some timing information.This exercise is to
use this time command to try some experiments timing modular exponentiation with
different parameters. For varying values of and (positive integers) generate a
prime at most ,and a random positive integer less than , then time calculating
ModExp , for and . (See Appendix B.7 Example 3.) For
each different value of run the experiment several times.Try this with at least two
different values for .Be sure to try varying the sizes of these parameters drasti-
cally (i.e.on the order of 10s and 100s.) What do you notice? What does this tell you?
[Hint:If you do the experiment correctly,you should make an observation that forms
the basis for side channel attacks,a powerful type of attack on crypto systems.]

8.5 The purpose of this question is to show how to generalize the Square and Mul-
tiply Exponentiation method to different radixes besides 2. This approach to
modular exponentiation is known as a “fixed window” exponentiation.
a. Write a Sage function that, given an integer , a modulus , and a base ,

computes a list of length , where the ith element of the list is mod .You
may use the ModExp function or any other method to compute the expo-
nentiation (but you don’t have to.) (See Appendix B.7 Example 3.)

b. Write a Sage function that takes an integer , an exponent , a base , and a
modulus . This function should compute a power table using the function
you wrote in part (a) and then use it by using the base expansion of toeb

N
bex

Nxib
bNx

(m, n)
e

2n - 1e = 2n(a, e, p)
pa2mp

nm

p, q

p, q

px(p+1)/4
xpxp K 3

n

{1, 2, Á , n - 1}n(7 2)

{1, 2, Á , n - 1}

n

n

Z03_STAL7044_05_SE_APPC.QXD 12/4/09 1:54 PM Page C-15

C-16 APPENDIX C / SAGE EXERCISES

determine where to index into the table. You may use modular exponentia-
tion, but only to calculate mod , for any integer .

c. Given that you use ModExp as a routine in the function you wrote in part (b)
what can you conclude about the optimal base to use for modular
exponentiation?

8.6 Suppose we want to create a Random Number Generator with hardness based
on the Discrete Log problem. In this problem we will investigate such an RNG
and show that it has some weaknesses. First, suppose that we have primes ,
such that . Now suppose that we have two points and with
multiplicative order mod . This means that mod . Let s[i]
denote the value of the internal state at time i. We generate the following
values as follows:
The intermediate data value:
The next internal state mod
The output of the Generate function mod
The following diagram shows the flow of the RNG.

Po[i] = Yt[i]
Ps[i + 1] = Xt[i]

t[i] = s[i]

PXQ K YQ K 1PQ
YXP = 2 #Q + 1

QP

yNyb

Xt[i] mod P

o[i]Yt[i] mod Pt[i]s[i + 1]/s[i]

We will call this RNG the Dual DL RNG (for Dual Discrete Log Random
Number Generator) For the following questions feel free to use Sage’s built in
modular exponentiation functionality, the example function for modular expo-
nentiation, or any functions from previous problems.
a. Implement a Sage function that takes primes , and integers , of mul-

tiplicative order mod and generates a random initial internal state (an
integer reduced mod). Have this function return a list with entries

.
b. Implement a Sage function that takes as a parameter a five element list cor-

responding to the internal state initialized by the function you wrote for
part (a). This function should generate a single block of output, and update
the list parameter’s last element to correspond to the next RNG state.

c. Suppose that we have ,
, , , and fur-

thermore we know that mod , where .
Find the positive integer such that mod . [Hint: remember that

mod . Find the positive integer f such that .]
d. Now, using the values for , , , from part (c), write a Sage function

that, given one output of the generate function (from part (b)) and gives the
output from the next call to the generate function. Use the functions you
wrote in part (a) and (b) to show that your function works. [Hint:What hap-
pens if you exponentiate the output of the generate function by the value
you found in part (c)?]

e. Write a version of the function that you wrote in part (b) that takes only ,
, and . Have it generate the value in a manner such that you know theYXQ

P

YXQP
e # f = 1 + k #QPXQ K 1

PYf K Xf
e = 1534964830632783921PXe K Y

Y = 5886823825742381258X = 106556372838543864018319
Q = 755815077240485P = 15116301544809716639

[P,Q,X,Y,s]
Q

sPQ
YXQP

Z03_STAL7044_05_SE_APPC.QXD 12/4/09 1:54 PM Page C-16

C.8 / NUMBER THEORY C-17

positive integer such mod . Your function should return a tuple
(rngstate,) where rngstate, is a valid rng state like the function from part
(b) returns.

f. Generalize your attack function from part (d) to work given a block of out-
put, with the and values you generated in part (e).

g. How would you modify this RNG to overcome this problem?
8.7 The example version of the Chinese Remainder Theorem has several ineffi-

ciencies. Observe that in the Chinese Remainder Theorem the first step is to
initialize the M array, where the value of M[i] is the product of all the moduli
except moduli[i]. This is performed at the beginning of every function call,
which is somewhat inefficient, because it could just be done once, for a single
set of moduli. Furthermore, the output of this function is larger than it needs
to be, indeed, it need be no larger than the product of all the moduli. In this
question, do not merely call built in Sage functions.
a. Write a function to pre-compute the M array, it should also compute the

product of all the moduli.
b. Write a version of the CRT function that takes the precomputed M array

and a list of residues. Make sure that the output of this function is no larger
than it needs to be.

8.8 The purpose of this question is to become more familiar with the Chinese
Remainder Theorem functionality in Sage. Use Sage to compute the following
questions about the CRT.
a. Find a number that reduces to 3 and 6 modulo 10 and 17, respectively
b. Find a number that reduces to 17, 89, 77, 65, and 100 modulo 23, 199, 503,

647, and 593, respectively
c. Find a number that reduces to 98189, 78089, and 13418 mod 519787, 722299

and 166169, respectively.
d. Compute the CRT basis of the moduli 100, 501, 999.
e. Find three numbers that reduce mod the moduli 49, 99, 1003, and 33191 to

i) 1,2,3,4
ii) 2,3,5,7

iii) 101, 99, 102, 98
f. Use Sage to compute an integer that is relatively prime to 1 through 5

modulo the first 5 primes, respectively.
8.9 The purpose of this question is to become more familiar with the Sage func-

tionality for modular exponentiation. Use Sage to compute:
a. mod 789
b. mod 797
c. mod 1000
d. mod 987654321
e. mod 3836311
f. Compute N, a product of two primes, both greater than 1,000,000 and then

compute
8.10 The purpose of this function is to show how to use the Euler totient function-

ality built into Sage. Using the built-in functionality in Sage, compute the

1217¿2833
111¿222
15¿30
100¿797
123¿456

fY

f
PYf K Xf

Z03_STAL7044_05_SE_APPC.QXD 12/4/09 1:54 PM Page C-17

C-18 APPENDIX C / SAGE EXERCISES

Euler totient function on the following inputs:
a. 781
b. 10245
c. 110
d. Find an exponent x and one or two integers such that raising to the x power

mod 547689 results in 1. Find at least one integer such that modular
exponentiation with x and this modulus does not result in 1.

e. Find an exponent x and one or two integers such that raising to the x
power mod 999999 results in 1. Find at least one integer such that modu-
lar exponentiation with x and this modulus does not result in 1.

C.9 CHAPTER 9: PUBLIC-KEY CRYPTOGRAPHY AND RSA

9.1 Use Sage to answer the following questions. Show all your Sage input/output:
a. Suppose your RSA public key factors as and , and the

public exponent is 11. Suppose you were sent the Ciphertext 28901722.
Perform the RSA Decryption and recover the plaintext.

b. Suppose that you want to encrypt the number 449 and send it to someone
with public key , and

c. Suppose that you forgot your public exponent, but you know that the prime
factors of your key’s modulus are 1723 and 5381 and your private exponent
is 223. Find the public exponent.

d. Use Sage to generate an RSA public/private key pair and perform an
encryption and decryption.

9.2 Use Sage to solve the following problems: In part (a)-(c) determine if the
following signatures are good or bad:
a. and value to and
b. and value to and
c. and value to and
d. Suppose that you have an RSA modulus with prime factors and

and the public exponent is 163. Calculate the signature of 521 and
then verify it.

9.3 The purpose of this question is to implement RSA encrypt and decrypt func-
tions with Sage.
a. Implement an RSA key generation function.
b. Implement an RSA encrypt function.
c. Implement an RSA decrypt function.
d. Show that your functions work by simulating an RSA encrypt and decrypt

with them.
9.4 The purpose of this question is to implement Sage functions for creating and

verifying RSA signatures. For these questions you may use any answers from
previous questions.
a. Implement a Sage function that takes an integer and an RSA private key

and produces an RSA signature of it.

q = 2677
p = 3181

signature = 2607727sign = 419e = 23N = 5898461
signature = 27535246sign = 2478e = 61N = 34300129

signature = 8674413sign = 821e = 3N = 13962799

e = 529N = 37617577

e
q = 8089p = 6569

Z03_STAL7044_05_SE_APPC.QXD 12/4/09 1:54 PM Page C-18

C.10 / OTHER PUBLIC-KEY CRYPTOSYSTEMS C-19

b. Implement a Sage function that takes an RSA signature and a hash value
and determines if the signature is valid.

c. Show your functions work by simulating a sign and verify. Show at least one
sign and verify and also show an example that if the hash or signature are
incorrect, your verify function correctly fails. (You may use the key genera-
tion function from an earlier problem.)

C.10 CHAPTER 10: OTHER PUBLIC-KEY CRYPTOSYSTEMS

10.1 For all of the following questions related to Diffie-Hellman show all of your
Sage input and output.
a. Suppose that you are Bob and you have agreed on the domain parameters

and . Further suppose that Alice has sent the value
. Compute a secret value and compute , and the shared secret.

b. Suppose that Alice and Bob have agreed on the domain parameters
and , further suppose that Alice chooses the secret value

and Bob chooses the secret value . Perform a simulated
key exchange as in the example.

c. Find a prime and a prime such that , find an element in the
finite field with elements that has multiplicative order . Perform a simu-
lated DH Secret Exchange as in the examples.

10.2 a. Implement a Sage function that takes a bound and returns 4 elements:
, and . Satisfying: and are prime, such that , is an

integer with multiplicative order in the finite field with elements, is a
Sage field object with elements.

b. Implement a Sage function that takes the output from your function in part
(a) and returns the pair where mod and is greater than 1
and less than .

c. Implement a Sage function that takes a public value from the other party in
the DH key exchange and the secret value and returns the shared secret.

d. Show an example key exchange with your functions from parts .
10.3 The purpose of this question is to use Sage to explore how solving the discrete

logarithm can break DH. In Sage, if is an element of a finite field, and gen-
erates , then if the order of the finite field is small enough a. will return
the discrete log of with respect to . Use this functionality to solve the
following problems.
a. Suppose , , and . Find such that .
b. Suppose , , , and . Find and such that

and .
c. Suppose , , and . Find the shared secret

value.
10.4 Recall the Dual DL PRNG (Problem 8.6). There is an actual crypto algorithm,

called the Dual EC DL PRNG, where instead of an element in a multiplicative
group mod a prime and exponentiation, we consider a point on an elliptic curve
over a prime order finite field and scalar multiplication (see NIST SP-800-90,

Y = 1318X = 6075g = 2p = 7589
Y = g¿yX = g¿x yxY = 239X = 543g = 5p = 863

X = g¿xxX = 297g = 7p = 499

ag
log(g)a

ga

(a) - (c)

q
xpX = g¿x(X, x)

p
Fpq

gp = 2*q + 1qpFp, q, g

qp
p = 2q + 1pq

y = 152x = 384
g = 3p = 6779

YyX = 39674
g = 2p = 70849

Z03_STAL7044_05_SE_APPC.QXD 12/4/09 1:54 PM Page C-19

C-20 APPENDIX C / SAGE EXERCISES

Recommendation for Random Number Generation Using Deterministic Ran-
dom Bit Generators.) We need to define some auxiliary functions:
• : maps the x-coordinate of an elliptic curve point, , to the integer the

smallest positive integer that maps to mod .
• : returns the least significant bits of integer .
And we also denote the following values:
• : a prime, with n bits.
• : an elliptic curve over a finite field with p elements, given by equation

.
• : a point on , with prime order q (for maximum security q should be

roughly the same size as p.)
• : a point in the cyclic subgroup of generated by .
At the beginning of iteration we have internal state , and we define the
following values:

1.
2.
3.
4.

Here is the output of the ith iteration block, and
The following diagram shows the flow for generating one block of output with
this Crypto Algorithm.

s[i + 1]o[i]
o[i] = LSBn-8 (r[i])
r[i] = x(t[i] #Q)
s[i + 1] = x(t[i] # P)
t[i] = s[i]

s[i]i
PEQ

EP
y2 = x3 + ax + b
E
p

amLSBm(a)
Px

Px(P)

o[i]LSBn-81r[i]2r[i]x1t[i] # Q2t[i]s[i + 1]/s[i]

x1t[i] # P2
The following problems outline a similar problem with this algorithm as the
one described in Problem 8.6.
a. Implement a Sage function to generate a single output block from this algo-

rithm (Your function should take an internal state represented as a list with
the following elements , where E is a Sage Elliptic Curve object, P
is a point on E, with prime order q, and Q is a point on E, generated by Q.

b. Write a Sage function that takes an output of this PRNG (i.e., the x coordi-
nate of a point with the top 8 bits truncated off) and returns the possible
values for that could have generated that output [Hint: try the
is_x_coordinate function on Elliptic Curve objects.]

c. Suppose you have E defined by ,
, , and you

know that the P has order and also
. Write a Sage function that takes an output from one itera-

tion of this function and returns a list of the possible next internal states.
Q = 99689 # P q = 1227273995918533091

Q = (6396452788131036613,9671497098832291002)88211854)
P = (42,980956284y¿2 = x¿3 + 2x + 4

R = t[i] #Q

[E,P,Q,si]

Z03_STAL7044_05_SE_APPC.QXD 12/4/09 1:54 PM Page C-20

C.10 / OTHER PUBLIC-KEY CRYPTOSYSTEMS C-21

d. Suppose you know that , and
, use the fact that you have two subsequent outputs to

determine the possible internal states that could have generated these two
outputs.

10.5 For all of the following questions show your Sage input/output.
a. Compute the order of the curve defined by over the

finite field with 47 elements.
b. On the curve defined by compute the

inverse of the point (1,1).
c. On the curve defined by over the finite field

with 701 elements, find a generator and show its order.
d. On the curve defined by over finite field of size

6421 compute the sum of the points (3711,373) and (4376,2463).
e. On the elliptic curve defined by over finite field

of size 8461 compute 1001 times the point (1735, 3464).
f. On the elliptic curve defined by over finite field

of size 8191, let P1 = (1794, 1318) and P2 = (3514, 409), compute the sum of
13 times P1 plus 28 times P2.

10.6 In this problem, use the domain parameters. E is the elliptic curve defined by
over the finite field with order 70177.The generator

point has order 70393. Show your Sage input/output.
a. Suppose you are Bob and Alice has sent the point (10117, 64081) compute

an integer y the point Y and the shared secret.
b. Suppose that Alice chooses the secret value and Bob chooses the

secret value y = 15276.
c. Perform a full simulated secret agreement between Alice and Bob.

10.7 The purpose of this question is to implement Sage functions to perform
ECDH.
a. Write a function that takes a curve, and a base point on the curve and gen-

erates the secret value x and the public value X as per ECDH.
b. Write a function that takes a public value and a secret value and computes

the shared secret.
c. Assume that your domain parameters are:

Elliptic Curve defined by over Finite Field of
size 63709

Show your functions work by simulating an ECDH key exchange.
10.8 Recall that for cryptographic purposes, we use curves with prime order. The

purpose of this question is to show why. Let E be the elliptic curve defined by
over Finite Field of size 23431. This curve has

order 23304. Let the base point be (20699, 19493).
a. Compute 10 random multiples of this base point. What do you notice?
b. Why is this bad? (Hint: What would happen if this was Alice or Bob’s public

point?)

y2 = x3 + 7489*x + 12591

G = (53819,6786)
q = 63839

y2 = x3 + 26484*x + 15456

x = 2532

G = (49359,30149)
y2 = x3 + 8871*x + 7063

y2 = x3 + 1800*x + 1357

y2 = x3 + 3361*x + 6370

y2 = x3 + 4187*x + 3814

y2 + y = x3 + x2 + x + 1

y2 + x*y = x3 + x over GF(28)

y2 = x3 + 7*x + 25

64511473570997445
o[i + 1] =o[i] = 58246156843038996

Z03_STAL7044_05_SE_APPC.QXD 12/4/09 1:54 PM Page C-21

C-22 APPENDIX C / SAGE EXERCISES

C.11 CHAPTER 11: CRYPTOGRAPHIC HASH FUNCTIONS

11.1 The following describes a simple hash function: Choose , primes and com-
pute . Choose relatively prime to and less than . Then a number

is hashed as follows:

If there is an that hashes to the same value as , then

so

which implies that

So breaking this amounts to finding a multiple of , which is the hard prob-
lem in RSA.
a. Write a function that takes a bitlength and generates a modulus of

bitlength and less than and relatively prime to it.
b. Show the output of your function from part (a) for a few outputs.

Using , , as arguments write a function to perform the hashing.
For parts compute the simple hash:
c. , ,
d. , ,
e. , ,
f. Write a function that creates a collision given and . Show that your func-

tion works for a couple of examples.

C.12 CHAPTER 13: DIGITAL SIGNATURES

13.1 Use Sage to solve the following problems. For these questions assume that we
are using DSA with domain parameters:

Use these domain parameters to determine if the signatures are valid in parts

a. public key , hash value , and signature

b. public key , hash value , and signature

c. public key , hash value , and signature

Perform a signing operation in parts (d)-(e).
(r,s) = (36283,32514)

H = 48302y = 4519088706115097514
(r,s) = (24646,43556)

H = 77241y = 1829820126190370021
(r,s) = (31019,4047)

H = 59367y = 3798043471854149631
(a) - (c).

g = 2,860,021,798,868,462,661
q = 44449
p = 7,877,914,592,603,328,881

qp
n = 443096843g = 12075635N = 604766153

n = 44344313866g = 189830397891N = 548155966307
n = 239715g = 154835N = 600107

(c) - (e)
ngN

Ngn
Nn

f(N)

m - n K 0 mod f(N)

gm-n K 1 mod N

gm K gn mod N

nm

H = gn mod N

n
NNgN = pq

qp

Z03_STAL7044_05_SE_APPC.QXD 12/4/09 1:54 PM Page C-22

C.12 / DIGITAL SIGNATURES C-23

d. private key , hash value
e. private key , hash value

13.2 The purpose of this question is to implement a DSA signature verification
function.
a. Implement a function that takes domain parameters , , and . Also, a

Hash value (in), a public key , and a signature ().
b. Use the function you wrote in part (a) as well as the functions from the

DSA examples to simulate a DSA signature and verify as in the examples.

r,sy{1, 2, Á , p - 1}H
gqp

H = 32782x = 1548
H = 22655x = 8146

Z03_STAL7044_05_SE_APPC.QXD 12/4/09 1:54 PM Page C-23

