MALICIOUS SOFTWARE

21.1

21.2

21.3

214

21.5

21.6
21.7

Types Of Malicious Software

Backdoor

Logic Bomb

Trojan Horses

Mobile Code
Multiple-Threat Malware

Viruses

The Nature of Viruses
Viruses Classification
Virus Kits

Macro Viruses

E-Mail Viruses

Virus Countermeasures

Antivirus Approaches
Advanced Antivirus Techniques

Worms

The Morris Worm

Worm Propagation Model
Recent Worm Attacks
State of Worm Technology
Mobile Phone Worms
Worm Countermeasures

Distributed Denial Of Service Attacks
DDoS Attack Description

Constructing the Attack Network
DDoS Countermeasures

Recommended Reading And Web Sites
Key Terms, Review Questions, And Problems

21-1

21-2 CHAPTER 21 / MALICIOUS SOFTWARE

What is the concept of defense: The parrying of a blow. What is its characteristic
feature: Awaiting the blow.

—On War, Carl Von Clausewitz

KEY POINTS

¢ Malicious software is software that is intentionally included or inserted in
a system for a harmful purpose.

¢ A virus is a piece of software that can “infect” other programs by modify-
ing them; the modification includes a copy of the virus program, which can
then go on to infect other programs.

¢ A worm is a program that can replicate itself and send copies from com-
puter to computer across network connections. Upon arrival, the worm
may be activated to replicate and propagate again. In addition to propaga-
tion, the worm usually performs some unwanted function.

¢ A denial of service (DoS) attack is an attempt to prevent legitimate users
of a service from using that service.

¢ A distributed denial of service attack is launched from multiple coordinated
sources.

Perhaps the most sophisticated types of threats to computer systems are presented by
programs that exploit vulnerabilities in computing systems. Such threats are referred to
as malicious software, or malware. In this context, we are concerned with threats to
application programs as well as utility programs, such as editors and compilers, and
kernel-level programs.

This chapter examines malicious software, with a special emphasis on viruses
and worms. The chapter begins with a survey of various types of malware, with a
more detailed look at the nature of viruses and worms. We then turn to distributed
denial-of-service attacks. Throughout, the discussion presents both threats and
countermeasures.

21.1 TYPES OF MALICIOUS SOFTWARE

The terminology in this area presents problems because of a lack of universal agree-
ment on all of the terms and because some of the categories overlap. Table 21.1 is a
useful guide.

Malicious software can be divided into two categories: those that need a host
program, and those that are independent. The former, referred to as parasitic, are
essentially fragments of programs that cannot exist independently of some
actual application program, utility, or system program. Viruses, logic bombs,

21.1 / TYPES OF MALICIOUS SOFTWARE 21-3

Table 21.1 Terminology of Malicious Programs

Name Description
Virus Malware that, when executed, tries to replicate itself into other executable code; when it
succeeds the code is said to be infected. When the infected code is executed, the virus also
executes.
Worm A computer program that can run independently and can propagate a complete working
version of itself onto other hosts on a network.
Logic bomb A program inserted into software by an intruder. A logic bomb lies dormant until a prede-

fined condition is met; the program then triggers an unauthorized act.

Trojan horse

A computer program that appears to have a useful function, but also has a hidden and
potentially malicious function that evades security mechanisms, sometimes by exploiting
legitimate authorizations of a system entity that invokes the Trojan horse program.

Backdoor Any mechanism that bypasses a normal security check; it may allow unauthorized access

(trapdoor) to functionality.

Mobile code Software (e.g., script, macro, or other portable instruction) that can be shipped unchanged
to a heterogeneous collection of platforms and execute with identical semantics.

Exploits Code specific to a single vulnerability or set of vulnerabilities.

Downloaders Program that installs other items on a machine that is under attack. Usually, a downloader

is sent in an e-mail.

Auto-rooter

Malicious hacker tools used to break into new machines remotely.

Kit (virus Set of tools for generating new viruses automatically.

generator)

Spammer Used to send large volumes of unwanted e-mail.

programs

Flooders Used to attack networked computer systems with a large volume of traffic to carry out a
denial-of-service (DoS) attack.

Keyloggers Captures keystrokes on a compromised system.

Rootkit Set of hacker tools used after attacker has broken into a computer system and gained
root-level access.

Zombie, bot Program activated on an infected machine that is activated to launch attacks on other
machines.

Spyware Software that collects information from a computer and transmits it to another system.

Adware Advertising that is integrated into software. It can result in pop-up ads or redirection of a

browser to a commercial site.

and backdoors are examples. Independent malware is a self-contained program
that can be scheduled and run by the operating system. Worms and bot programs
are examples.

We can also differentiate between those software threats that do not repli-

cate and those that do. The former are programs or fragments of programs that
are activated by a trigger. Examples are logic bombs, backdoors, and bot pro-
grams. The latter consist of either a program fragment or an independent
program that, when executed, may produce one or more copies of itself to be

21-4

CHAPTER 21 / MALICIOUS SOFTWARE

activated later on the same system or some other system. Viruses and worms are
examples.

In the remainder of this section, we briefly survey some of the key categories
of malicious software, deferring discussion on the key topics of viruses and worms
until the following sections.

Backdoor

A backdoor, also known as a trapdoor, is a secret entry point into a program that
allows someone who is aware of the backdoor to gain access without going through
the usual security access procedures. Programmers have used backdoors legiti-
mately for many years to debug and test programs; such a backdoor is called a
maintenance hook. This usually is done when the programmer is developing an
application that has an authentication procedure, or a long setup, requiring the user
to enter many different values to run the application. To debug the program, the
developer may wish to gain special privileges or to avoid all the necessary setup and
authentication. The programmer may also want to ensure that there is a method of
activating the program should something be wrong with the authentication proce-
dure that is being built into the application. The backdoor is code that recognizes
some special sequence of input or is triggered by being run from a certain user ID or
by an unlikely sequence of events.

Backdoors become threats when unscrupulous programmers use them to
gain unauthorized access. The backdoor was the basic idea for the vulnerability
portrayed in the movie War Games. Another example is that during the develop-
ment of Multics, penetration tests were conducted by an Air Force “tiger team”
(simulating adversaries). One tactic employed was to send a bogus operating
system update to a site running Multics. The update contained a Trojan horse
(described later) that could be activated by a backdoor and that allowed the
tiger team to gain access. The threat was so well implemented that the Multics
developers could not find it, even after they were informed of its presence
[ENGES0].

It is difficult to implement operating system controls for backdoors.
Security measures must focus on the program development and software update
activities.

Logic Bomb

One of the oldest types of program threat, predating viruses and worms, is the
logic bomb. The logic bomb is code embedded in some legitimate program that is
set to “explode” when certain conditions are met. Examples of conditions that
can be used as triggers for a logic bomb are the presence or absence of certain
files, a particular day of the week or date, or a particular user running the appli-
cation. Once triggered, a bomb may alter or delete data or entire files, cause a
machine halt, or do some other damage. A striking example of how logic bombs
can be employed was the case of Tim Lloyd, who was convicted of setting a logic
bomb that cost his employer, Omega Engineering, more than $10 million,
derailed its corporate growth strategy, and eventually led to the layoff of 80

21.1 / TYPES OF MALICIOUS SOFTWARE 21-5

workers [GAUDOO]. Ultimately, Lloyd was sentenced to 41 months in prison and
ordered to pay $2 million in restitution.

Trojan Horses

A Trojan horse! is a useful, or apparently useful, program or command procedure
containing hidden code that, when invoked, performs some unwanted or harmful
function.

Trojan horse programs can be used to accomplish functions indirectly that an
unauthorized user could not accomplish directly. For example, to gain access to the
files of another user on a shared system, a user could create a Trojan horse program
that, when executed, changes the invoking user’s file permissions so that the files are
readable by any user. The author could then induce users to run the program by
placing it in a common directory and naming it such that it appears to be a useful
utility program or application. An example is a program that ostensibly produces a
listing of the user’s files in a desirable format. After another user has run the
program, the author of the program can then access the information in the user’s
files. An example of a Trojan horse program that would be difficult to detect is a
compiler that has been modified to insert additional code into certain programs as
they are compiled, such as a system login program [THOMS84]. The code creates a
backdoor in the login program that permits the author to log on to the system using
a special password. This Trojan horse can never be discovered by reading the source
code of the login program.

Another common motivation for the Trojan horse is data destruction. The
program appears to be performing a useful function (e.g., a calculator program), but
it may also be quietly deleting the user’s files. For example, a CBS executive was
victimized by a Trojan horse that destroyed all information contained in his com-
puter’s memory [TIME90]. The Trojan horse was implanted in a graphics routine
offered on an electronic bulletin board system.

Trojan horses fit into one of three models:

¢ Continuing to perform the function of the original program and additionally
performing a separate malicious activity

* Continuing to perform the function of the original program but modifying the
function to perform malicious activity (e.g., a Trojan horse version of a login
program that collects passwords) or to disguise other malicious activity (e.g., a
Trojan horse version of a process listing program that does not display certain
processes that are malicious)

¢ Performing a malicious function that completely replaces the function of the
original program

'In Greek mythology, the Trojan horse was used by the Greeks during their siege of Troy. Epeios
constructed a giant hollow wooden horse in which thirty of the most valiant Greek heroes concealed
themselves. The rest of the Greeks burned their encampment and pretended to sail away but actually hid
nearby. The Trojans, convinced the horse was a gift and the siege over, dragged the horse into the city.
That night, the Greeks emerged from the horse and opened the city gates to the Greek army. A blood-
bath ensued, resulting in the destruction of Troy and the death or enslavement of all its citizens.

21-6

CHAPTER 21 / MALICIOUS SOFTWARE

Mobile Code

Mobile code refers to programs (e.g., script, macro, or other portable instruction)
that can be shipped unchanged to a heterogeneous collection of platforms and
execute with identical semantics [JANSO1]. The term also applies to situations
involving a large homogeneous collection of platforms (e.g., Microsoft Windows).
Mobile code is transmitted from a remote system to a local system and then
executed on the local system without the user’s explicit instruction. Mobile code
often acts as a mechanism for a virus, worm, or Trojan horse to be transmitted to the
user’s workstation. In other cases, mobile code takes advantage of vulnerabilities to
perform its own exploits, such as unauthorized data access or root compromise.
Popular vehicles for mobile code include Java applets, ActiveX, JavaScript, and
VBScript. The most common ways of using mobile code for malicious operations on
local system are cross-site scripting, interactive and dynamic Web sites, e-mail
attachments, and downloads from untrusted sites or of untrusted software.

Multiple-Threat Malware

Viruses and other malware may operate in multiple ways. The terminology is far
from uniform; this subsection gives a brief introduction to several related concepts
that could be considered multiple-threat malware.

A multipartite virus infects in multiple ways. Typically, the multipartite virus is
capable of infecting multiple types of files, so that virus eradication must deal with
all of the possible sites of infection.

A blended attack uses multiple methods of infection or transmission, to maxi-
mize the speed of contagion and the severity of the attack. Some writers characterize
a blended attack as a package that includes multiple types of malware. An example of
a blended attack is the Nimda attack, erroneously referred to as simply a worm.
Nimda uses four distribution methods:

e E-mail: A user on a vulnerable host opens an infected e-mail attachment;
Nimda looks for e-mail addresses on the host and then sends copies of itself to
those addresses.

* Windows shares: Nimda scans hosts for unsecured Windows file shares; it can
then use NetBIOSS86 as a transport mechanism to infect files on that host in
the hopes that a user will run an infected file, which will activate Nimda on
that host.

* Web servers: Nimda scans Web servers, looking for known vulnerabilities in
Microsoft IIS. If it finds a vulnerable server, it attempts to transfer a copy of
itself to the server and infect it and its files.

* Web clients: If a vulnerable Web client visits a Web server that has been
infected by Nimda, the client’s workstation will become infected.

Thus, Nimda has worm, virus, and mobile code characteristics. Blended attacks
may also spread through other services, such as instant messaging and peer-to-peer
file sharing.

21.2 /VIRUSES 21-7

21.2 VIRUSES

The Nature of Viruses

A computer virus is a piece of software that can “infect” other programs by modifying
them; the modification includes injecting the original program with a routine to make
copies of the virus program, which can then go on to infect other programs. Computer
viruses first appeared in the early 1980s, and the term itself is attributed to Fred Cohen
in 1983. Cohen is the author of a groundbreaking book on the subject [COHE9%4].

Biological viruses are tiny scraps of genetic code—DNA or RNA—that can
take over the machinery of a living cell and trick it into making thousands of flaw-
less replicas of the original virus. Like its biological counterpart, a computer virus
carries in its instructional code the recipe for making perfect copies of itself. The
typical virus becomes embedded in a program on a computer. Then, whenever the
infected computer comes into contact with an uninfected piece of software, a fresh
copy of the virus passes into the new program. Thus, the infection can be spread
from computer to computer by unsuspecting users who either swap disks or send
programs to one another over a network. In a network environment, the ability to
access applications and system services on other computers provides a perfect cul-
ture for the spread of a virus.

A virus can do anything that other programs do. The difference is that a virus
attaches itself to another program and executes secretly when the host program is
run. Once a virus is executing, it can perform any function, such as erasing files and
programs that is allowed by the privileges of the current user.

A computer virus has three parts [AYCOO06]:

¢ Infection mechanism: The means by which a virus spreads, enabling it to repli-
cate. The mechanism is also referred to as the infection vector.

e Trigger: The event or condition that determines when the payload is activated
or delivered.

e Payload: What the virus does, besides spreading. The payload may involve
damage or may involve benign but noticeable activity.

During its lifetime, a typical virus goes through the following four phases:

* Dormant phase: The virus is idle. The virus will eventually be activated by
some event, such as a date, the presence of another program or file, or the
capacity of the disk exceeding some limit. Not all viruses have this stage.

* Propagation phase: The virus places a copy of itself into other programs or into
certain system areas on the disk. The copy may not be identical to the propa-
gating version; viruses often morph to evade detection. Each infected program
will now contain a clone of the virus, which will itself enter a propagation phase.

* Triggering phase: The virus is activated to perform the function for which it
was intended. As with the dormant phase, the triggering phase can be caused
by a variety of system events, including a count of the number of times that
this copy of the virus has made copies of itself.

21-8

CHAPTER 21 / MALICIOUS SOFTWARE

¢ Execution phase: The function is performed. The function may be harmless,
such as a message on the screen, or damaging, such as the destruction of
programs and data files.

Most viruses carry out their work in a manner that is specific to a particular oper-
ating system and, in some cases, specific to a particular hardware platform. Thus, they
are designed to take advantage of the details and weaknesses of particular systems.

Virus STRUCTURE A virus can be prepended or postpended to an executable
program, or it can be embedded in some other fashion. The key to its operation is
that the infected program, when invoked, will first execute the virus code and then
execute the original code of the program.

A very general depiction of virus structure is shown in Figure 21.1 (based on
[COHEY4]). In this case, the virus code, V, is prepended to infected programs, and it
is assumed that the entry point to the program, when invoked, is the first line of the
program.

The infected program begins with the virus code and works as follows. The first
line of code is a jump to the main virus program. The second line is a special marker
that is used by the virus to determine whether or not a potential victim program has
already been infected with this virus. When the program is invoked, control is imme-
diately transferred to the main virus program. The virus program may first seek out
uninfected executable files and infect them. Next, the virus may perform some
action, usually detrimental to the system. This action could be performed every time
the program is invoked, or it could be a logic bomb that triggers only under certain
conditions. Finally, the virus transfers control to the original program. If the infection

program V :=

{ goto main;
1234567,

subroutine infect-executable : =
{loop:
file := get-random-executable-file;
if (first-line-of-file = 1234567)
then goto loop
else prepend V to file; }

subroutine do-damage :=
{ whatever damage is to be done}

subroutine trigger-pulled :=
{return true if some condition holds}

main: main-program :=
{infect-executable;
if trigger-pulled then do-damage;
goto next; }

next:

}

Figure 21.1 A Simple Virus

21.2 /VIRUSES 21-9

program CV :=

{ goto main;
01234567,

subroutine infect-executable : =
{loop:
file := get-random-executable-file;
if (first-line-of-file = 01234567) then goto loop;
(1) compress file;
(2) prepend CV to file;
}

main: main-program :=
{if ask-permission then infect-executable;
(3) uncompress rest-of-file;
(4) run uncompressed file;}

}

Figure 21.2 Logic for a Compression Virus

phase of the program is reasonably rapid, a user is unlikely to notice any difference
between the execution of an infected and an uninfected program.

A virus such as the one just described is easily detected because an infected
version of a program is longer than the corresponding uninfected one. A way to
thwart such a simple means of detecting a virus is to compress the executable file so
that both the infected and uninfected versions are of identical length. Figure 21.2
[COHEY4] shows in general terms the logic required. The key lines in this virus are
numbered, and Figure 21.3 [COHEY4] illustrates the operation. We assume that
program P1 is infected with the virus CV. When this program is invoked, control
passes to its virus, which performs the following steps:

1. For each uninfected file P, that is found, the virus first compresses that file to
produce P, which is shorter than the original program by the size of the virus.

2. A copy of the virus is prepended to the compressed program.

3. The compressed version of the original infected program, P1, is uncompressed.

4. The uncompressed original program is executed.

@
/,’/ ‘\\\
cv cv P cv
1 1
[e | [v | AN CE
A
/: 1 : 1M
1 [1
! P i
1 1
Py P, P’ AR P,
! P i
! o 1
! o 1
! o 1
| I S
ty Lt

Figure 21.3 A Compression Virus

21-10

CHAPTER 21 / MALICIOUS SOFTWARE

In this example, the virus does nothing other than propagate. As previously
mentioned, the virus may include a logic bomb.

Inrrrar INFecTION Once a virus has gained entry to a system by infecting a single
program, it is in a position to potentially infect some or all other executable files on
that system when the infected program executes. Thus, viral infection can be
completely prevented by preventing the virus from gaining entry in the first place.
Unfortunately, prevention is extraordinarily difficult because a virus can be part of
any program outside a system. Thus, unless one is content to take an absolutely bare
piece of iron and write all one’s own system and application programs, one is
vulnerable. Many forms of infection can also be blocked by denying normal users
the right to modify programs on the system.

The lack of access controls on early PCs is a key reason why traditional
machine code based viruses spread rapidly on these systems. In contrast, while it is
easy enough to write a machine code virus for UNIX systems, they were almost
never seen in practice because the existence of access controls on these systems pre-
vented effective propagation of the virus. Traditional machine code based viruses
are now less prevalent, because modern PC OSs do have more effective access con-
trols. However, virus creators have found other avenues, such as macro and e-mail
viruses, as discussed subsequently.

Viruses Classification

There has been a continuous arms race between virus writers and writers of
antivirus software since viruses first appeared. As effective countermeasures are
developed for existing types of viruses, newer types are developed. There is no
simple or universally agreed upon classification scheme for viruses, In this section,
we follow [AYCOO06] and classify viruses along two orthogonal axes: the type of
target the virus tries to infect and the method the virus uses to conceal itself from
detection by users and antivirus software.
A virus classification by target includes the following categories:

* Boot sector infector: Infects a master boot record or boot record and spreads
when a system is booted from the disk containing the virus.

¢ File infector: Infects files that the operating system or shell consider to be
executable.

* Macro virus: Infects files with macro code that is interpreted by an applica-
tion.

A virus classification by concealment strategy includes the following categories:

* Encrypted virus: A typical approach is as follows. A portion of the virus cre-
ates a random encryption key and encrypts the remainder of the virus. The key
is stored with the virus. When an infected program is invoked, the virus uses
the stored random key to decrypt the virus. When the virus replicates, a differ-
ent random key is selected. Because the bulk of the virus is encrypted with a
different key for each instance, there is no constant bit pattern to observe.

21.2 /VIRUSES 21-11

e Stealth virus: A form of virus explicitly designed to hide itself from detection
by antivirus software. Thus, the entire virus, not just a payload is hidden.

* Polymorphic virus: A virus that mutates with every infection, making detec-
tion by the “signature” of the virus impossible.

° Metamorphic virus: As with a polymorphic virus, a metamorphic virus mutates
with every infection. The difference is that a metamorphic virus rewrites itself
completely at each iteration, increasing the difficulty of detection.
Metamorphic viruses may change their behavior as well as their appearance.

One example of a stealth virus was discussed earlier: a virus that uses com-
pression so that the infected program is exactly the same length as an uninfected
version. Far more sophisticated techniques are possible. For example, a virus can
place intercept logic in disk I/O routines, so that when there is an attempt to read
suspected portions of the disk using these routines, the virus will present back the
original, uninfected program. Thus, stealth is not a term that applies to a virus as such
but, rather, refers to a technique used by a virus to evade detection.

A polymorphic virus creates copies during replication that are functionally
equivalent but have distinctly different bit patterns. As with a stealth virus, the pur-
pose is to defeat programs that scan for viruses. In this case, the “signature” of the
virus will vary with each copy. To achieve this variation, the virus may randomly
insert superfluous instructions or interchange the order of independent instructions.
A more effective approach is to use encryption. The strategy of the encryption virus
is followed. The portion of the virus that is responsible for generating keys and
performing encryption/decryption is referred to as the mutation engine. The muta-
tion engine itself is altered with each use.

Virus Kits

Another weapon in the virus writers’ armory is the virus-creation toolkit. Such a
toolkit enables a relative novice to quickly create a number of different viruses.
Although viruses created with toolkits tend to be less sophisticated than viruses
designed from scratch, the sheer number of new viruses that can be generated using
a toolkit creates a problem for antivirus schemes.

Macro Viruses

In the mid-1990s, macro viruses became by far the most prevalent type of virus.
Macro viruses are particularly threatening for a number of reasons:

1. A macro virus is platform independent. Many macro viruses infect Microsoft
Word documents or other Microsoft Office documents. Any hardware plat-
form and operating system that supports these applications can be infected.

2. Macro viruses infect documents, not executable portions of code. Most of the
information introduced onto a computer system is in the form of a document
rather than a program.

3. Macro viruses are easily spread. A very common method is by electronic mail.

4. Because macro viruses infect user documents rather than system programs, tra-
ditional file system access controls are of limited use in preventing their spread.

21-12 CHAPTER 21 / MALICIOUS SOFTWARE

Macro viruses take advantage of a feature found in Word and other office
applications such as Microsoft Excel, namely the macro. In essence, a macro is an
executable program embedded in a word processing document or other type of file.
Typically, users employ macros to automate repetitive tasks and thereby save
keystrokes. The macro language is usually some form of the Basic programming
language. A user might define a sequence of keystrokes in a macro and set it up so
that the macro is invoked when a function key or special short combination of keys
is input.

Successive releases of MS Office products provide increased protection
against macro viruses. For example, Microsoft offers an optional Macro Virus
Protection tool that detects suspicious Word files and alerts the customer to the
potential risk of opening a file with macros. Various antivirus product vendors have
also developed tools to detect and correct macro viruses. As in other types of
viruses, the arms race continues in the field of macro viruses, but they no longer are
the predominant virus threat.

E-Mail Viruses

A more recent development in malicious software is the e-mail virus. The first
rapidly spreading e-mail viruses, such as Melissa, made use of a Microsoft Word
macro embedded in an attachment. If the recipient opens the e-mail attachment, the
Word macro is activated. Then

1. The e-mail virus sends itself to everyone on the mailing list in the user’s e-mail
package.

2. The virus does local damage on the user’s system.

In 1999, a more powerful version of the e-mail virus appeared. This newer
version can be activated merely by opening an e-mail that contains the virus rather
than opening an attachment. The virus uses the Visual Basic scripting language
supported by the e-mail package.

Thus we see a new generation of malware that arrives via e-mail and uses e-mail
software features to replicate itself across the Internet. The virus propagates itself as
soon as it is activated (either by opening an e-mail attachment or by opening the
e-mail) to all of the e-mail addresses known to the infected host. As a result, whereas
viruses used to take months or years to propagate, they now do so in hours. This makes
it very difficult for antivirus software to respond before much damage is done.
Ultimately, a greater degree of security must be built into Internet utility and applica-
tion software on PCs to counter the growing threat.

21.3 VIRUS COUNTERMEASURES

Antivirus Approaches

The ideal solution to the threat of viruses is prevention: Do not allow a virus to get
into the system in the first place, or block the ability of a virus to modify any files
containing executable code or macros. This goal is, in general, impossible to achieve,

21.3 /VIRUS COUNTERMEASURES 21-13

although prevention can reduce the number of successful viral attacks. The next best
approach is to be able to do the following:

* Detection: Once the infection has occurred, determine that it has occurred
and locate the virus.

¢ Identification: Once detection has been achieved, identify the specific virus
that has infected a program.

* Removal: Once the specific virus has been identified, remove all traces of the
virus from the infected program and restore it to its original state. Remove the
virus from all infected systems so that the virus cannot spread further.

If detection succeeds but either identification or removal is not possible, then the
alternative is to discard the infected file and reload a clean backup version.

Advances in virus and antivirus technology go hand in hand. Early viruses
were relatively simple code fragments and could be identified and purged with
relatively simple antivirus software packages. As the virus arms race has evolved,
both viruses and, necessarily, antivirus software have grown more complex and
sophisticated.

[STEP93] identifies four generations of antivirus software:

 First generation: simple scanners
* Second generation: heuristic scanners
e Third generation: activity traps

¢ Fourth generation: full-featured protection

A first-generation scanner requires a virus signature to identify a virus. The
virus may contain “wildcards” but has essentially the same structure and bit pattern
in all copies. Such signature-specific scanners are limited to the detection of known
viruses. Another type of first-generation scanner maintains a record of the length of
programs and looks for changes in length.

A second-generation scanner does not rely on a specific signature. Rather, the
scanner uses heuristic rules to search for probable virus infection. One class of such
scanners looks for fragments of code that are often associated with viruses. For
example, a scanner may look for the beginning of an encryption loop used in a poly-
morphic virus and discover the encryption key. Once the key is discovered, the
scanner can decrypt the virus to identify it, then remove the infection and return
the program to service.

Another second-generation approach is integrity checking. A checksum can
be appended to each program. If a virus infects the program without changing the
checksum, then an integrity check will catch the change. To counter a virus that is
sophisticated enough to change the checksum when it infects a program, an
encrypted hash function can be used. The encryption key is stored separately from
the program so that the virus cannot generate a new hash code and encrypt that. By
using a hash function rather than a simpler checksum, the virus is prevented from
adjusting the program to produce the same hash code as before.

Third-generation programs are memory-resident programs that identify a
virus by its actions rather than its structure in an infected program. Such programs

21-14

CHAPTER 21 / MALICIOUS SOFTWARE

have the advantage that it is not necessary to develop signatures and heuristics for a
wide array of viruses. Rather, it is necessary only to identify the small set of actions
that indicate an infection is being attempted and then to intervene.

Fourth-generation products are packages consisting of a variety of antivirus
techniques used in conjunction. These include scanning and activity trap compo-
nents. In addition, such a package includes access control capability, which limits the
ability of viruses to penetrate a system and then limits the ability of a virus to update
files in order to pass on the infection.

The arms race continues. With fourth-generation packages, a more compre-
hensive defense strategy is employed, broadening the scope of defense to more
general-purpose computer security measures.

Advanced Antivirus Techniques

More sophisticated antivirus approaches and products continue to appear. In this
subsection, we highlight some of the most important.

Generic Decryprion Generic decryption (GD) technology enables the antivirus
program to easily detect even the most complex polymorphic viruses while
maintaining fast scanning speeds [NACH97]. Recall that when a file containing a
polymorphic virus is executed, the virus must decrypt itself to activate. In order to
detect such a structure, executable files are run through a GD scanner, which
contains the following elements:

° CPU emulator: A software-based virtual computer. Instructions in an exe-
cutable file are interpreted by the emulator rather than executed on the
underlying processor. The emulator includes software versions of all registers
and other processor hardware, so that the underlying processor is unaffected
by programs interpreted on the emulator.

* Virus signature scanner: A module that scans the target code looking for
known virus signatures.

° Emulation control module: Controls the execution of the target code.

At the start of each simulation, the emulator begins interpreting instructions
in the target code, one at a time. Thus, if the code includes a decryption routine that
decrypts and hence exposes the virus, that code is interpreted. In effect, the virus
does the work for the antivirus program by exposing the virus. Periodically, the con-
trol module interrupts interpretation to scan the target code for virus signatures.

During interpretation, the target code can cause no damage to the actual per-
sonal computer environment, because it is being interpreted in a completely con-
trolled environment.

The most difficult design issue with a GD scanner is to determine how long to
run each interpretation. Typically, virus elements are activated soon after a program
begins executing, but this need not be the case. The longer the scanner emulates a
particular program, the more likely it is to catch any hidden viruses. However, the
antivirus program can take up only a limited amount of time and resources before
users complain of degraded system performance.

21.3 /VIRUS COUNTERMEASURES 21-15

Dircrrar Imvune SysTem The digital immune system is a comprehensive approach
to virus protection developed by IBM [KEPH97a, KEPH97b, WHIT99] and
subsequently refined by Symantec [SYMAO1]. The motivation for this development
has been the rising threat of Internet-based virus propagation. We first say a few
words about this threat and then summarize IBM’s approach.

Traditionally, the virus threat was characterized by the relatively slow spread of
new viruses and new mutations. Antivirus software was typically updated on a
monthly basis, and this was sufficient to control the problem. Also traditionally, the
Internet played a comparatively small role in the spread of viruses. But as [CHES97]
points out, two major trends in Internet technology have had an increasing impact on
the rate of virus propagation in recent years:

¢ Integrated mail systems: Systems such as Lotus Notes and Microsoft Outlook
make it very simple to send anything to anyone and to work with objects that
are received.

° Mobile-program systems: Capabilities such as Java and ActiveX allow
programs to move on their own from one system to another.

In response to the threat posed by these Internet-based capabilities, IBM has
developed a prototype digital immune system. This system expands on the use of
program emulation discussed in the preceding subsection and provides a general-
purpose emulation and virus-detection system. The objective of this system is to
provide rapid response time so that viruses can be stamped out almost as soon as
they are introduced. When a new virus enters an organization, the immune system
automatically captures it, analyzes it, adds detection and shielding for it, removes it,
and passes information about that virus to systems running IBM AntiVirus so that it
can be detected before it is allowed to run elsewhere.

Figure 21.4 illustrates the typical steps in digital immune system operation:

1. A monitoring program on each PC uses a variety of heuristics based on system
behavior, suspicious changes to programs, or family signature to infer that a
virus may be present. The monitoring program forwards a copy of any program
thought to be infected to an administrative machine within the organization.

2. The administrative machine encrypts the sample and sends it to a central virus
analysis machine.

3. This machine creates an environment in which the infected program can be
safely run for analysis. Techniques used for this purpose include emulation, or the
creation of a protected environment within which the suspect program can be
executed and monitored. The virus analysis machine then produces a prescrip-
tion for identifying and removing the virus.

E

The resulting prescription is sent back to the administrative machine.

wn

The administrative machine forwards the prescription to the infected client.

The prescription is also forwarded to other clients in the organization.

&S

Subscribers around the world receive regular antivirus updates that protect
them from the new virus.

21-16

CHAPTER 21 / MALICIOUS SOFTWARE

1 Virus-
/ infected

3 . — client .
l Virus 2 o hi ———] Client
- . Administrative 5 IEIEITS machine
Analyze virus | analysis machine
behavior and | machine
structure
i . Client
Private .
Extract Client machine
signature 4 network machine
Derive

prescription W*

Administrative Client
machine

Other
Client | private
network

Client

Individual
user

Figure 21.4 Digital Immune System

The success of the digital immune system depends on the ability of the virus
analysis machine to detect new and innovative virus strains. By constantly analyzing
and monitoring the viruses found in the wild, it should be possible to continually
update the digital immune software to keep up with the threat.

Brravior-Brockine SorTware Unlike heuristics or fingerprint-based scanners,
behavior-blocking software integrates with the operating system of a host computer
and monitors program behavior in real-time for malicious actions [CONRO02,
NACHO2]. The behavior blocking software then blocks potentially malicious actions
before they have a chance to affect the system. Monitored behaviors can include

e Attempts to open, view, delete, and/or modify files;

e Attempts to format disk drives and other unrecoverable disk operations;

e Modifications to the logic of executable files or macros;

* Modification of critical system settings, such as start-up settings;

* Scripting of e-mail and instant messaging clients to send executable content; and
¢ Initiation of network communications.

Figure 21.5 illustrates the operation of a behavior blocker. Behavior-blocking
software runs on server and desktop computers and is instructed through policies
set by the network administrator to let benign actions take place but to intercede
when unauthorized or suspicious actions occur. The module blocks any suspicious
software from executing. A blocker isolates the code in a sandbox, which restricts
the code’s access to various OS resources and applications. The blocker then sends
an alert.

Because a behavior blocker can block suspicious software in real-time, it has an
advantage over such established antivirus detection techniques as fingerprinting or

21.4 /wWORrRMS 21-17

3. Behavior-blocking
software at server flags
suspicious code. The
blocker"sandboxes" the
suspicious software to
prevent it from proceeding

1. Administrator sets

acceptable software behavior
policies and uploads them to
a server. Policies can also be

uploaded to desktops. Sandb
. /\an 0X|
> f—
‘s > _
< 2. Malicious software
@ manages to make it S
. . h h the fi 11. .
Administrator through the firewa Firewall

Server running
4. Server alerts administrator behavior-blocking
that suspicious code has been
identified and sandboxed, software
awaiting administrator's
decision on whether the code
should be removed or allowed
to run.

Internet

Figure 21.5 Behavior-Blocking Software Operation

heuristics. While there are literally trillions of different ways to obfuscate and
rearrange the instructions of a virus or worm, many of which will evade detection by a
fingerprint scanner or heuristic, eventually malicious code must make a well-defined
request to the operating system. Given that the behavior blocker can intercept all such
requests, it can identify and block malicious actions regardless of how obfuscated the
program logic appears to be.

Behavior blocking alone has limitations. Because the malicious code must run
on the target machine before all its behaviors can be identified, it can cause harm
before it has been detected and blocked. For example, a new virus might shuffle a
number of seemingly unimportant files around the hard drive before infecting a sin-
gle file and being blocked. Even though the actual infection was blocked, the user
may be unable to locate his or her files, causing a loss to productivity or possibly
worse.

21.4 WORMS

A worm is a program that can replicate itself and send copies from computer to
computer across network connections. Upon arrival, the worm may be activated to
replicate and propagate again. In addition to propagation, the worm usually
performs some unwanted function. An e-mail virus has some of the characteristics
of a worm because it propagates itself from system to system. However, we can still

21-18

CHAPTER 21 / MALICIOUS SOFTWARE

classify it as a virus because it uses a document modified to contain viral macro
content and requires human action. A worm actively seeks out more machines to
infect and each machine that is infected serves as an automated launching pad for
attacks on other machines.

The concept of a computer worm was introduced in John Brunner’s 1975 SF
novel The Shockwave Rider. The first known worm implementation was done in
Xerox Palo Alto Labs in the early 1980s. It was nonmalicious, searching for idle
systems to use to run a computationally intensive task.

Network worm programs use network connections to spread from system to
system. Once active within a system, a network worm can behave as a computer
virus or bacteria, or it could implant Trojan horse programs or perform any number
of disruptive or destructive actions.

To replicate itself, a network worm uses some sort of network vehicle.
Examples include the following:

* Electronic mail facility: A worm mails a copy of itself to other systems, so that
its code is run when the e-mail or an attachment is received or viewed.

* Remote execution capability: A worm executes a copy of itself on another
system, either using an explicit remote execution facility or by exploiting a
program flaw in a network service to subvert its operations.

* Remote login capability: A worm logs onto a remote system as a user and then
uses commands to copy itself from one system to the other, where it then
executes.

The new copy of the worm program is then run on the remote system where, in
addition to any functions that it performs at that system, it continues to spread in the
same fashion.

A network worm exhibits the same characteristics as a computer virus: a
dormant phase, a propagation phase, a triggering phase, and an execution phase. The
propagation phase generally performs the following functions:

1. Search for other systems to infect by examining host tables or similar reposi-
tories of remote system addresses.
2. Establish a connection with a remote system.
3. Copy itself to the remote system and cause the copy to be run.
The network worm may also attempt to determine whether a system has
previously been infected before copying itself to the system. In a multiprogramming
system, it may also disguise its presence by naming itself as a system process or using

some other name that may not be noticed by a system operator.
As with viruses, network worms are difficult to counter.

The Morris Worm

Until the current generation of worms, the best known was the worm released onto
the Internet by Robert Morris in 1988 [ORMAO03]. The Morris worm was designed to
spread on UNIX systems and used a number of different techniques for propagation.

21.4 /wWwoOrRMS 21-19

When a copy began execution, its first task was to discover other hosts known to this
host that would allow entry from this host. The worm performed this task by examin-
ing a variety of lists and tables, including system tables that declared which other
machines were trusted by this host, users’ mail forwarding files, tables by which users
gave themselves permission for access to remote accounts, and from a program that
reported the status of network connections. For each discovered host, the worm tried
a number of methods for gaining access:

1. It attempted to log on to a remote host as a legitimate user. In this method, the
worm first attempted to crack the local password file and then used the
discovered passwords and corresponding user IDs. The assumption was that
many users would use the same password on different systems. To obtain the
passwords, the worm ran a password-cracking program that tried

a. Each user’s account name and simple permutations of it

b. A list of 432 built-in passwords that Morris thought to be likely
candidates’

c. All the words in the local system dictionary

2. Tt exploited a bug in the UNIX finger protocol, which reports the whereabouts of
a remote user.

3. It exploited a trapdoor in the debug option of the remote process that receives
and sends mail.

If any of these attacks succeeded, the worm achieved communication with the
operating system command interpreter. It then sent this interpreter a short boot-
strap program, issued a command to execute that program, and then logged off. The
bootstrap program then called back the parent program and downloaded the
remainder of the worm. The new worm was then executed.

Worm Propagation Model

[ZOUO05] describes a model for worm propagation based on an analysis of recent
worm attacks. The speed of propagation and the total number of hosts infected
depend on a number of factors, including the mode of propagation, the vulnerability
or vulnerabilities exploited, and the degree of similarity to preceding attacks. For
the latter factor, an attack that is a variation of a recent previous attack may be
countered more effectively than a more novel attack. Figure 21.6 shows the dynam-
ics for one typical set of parameters. Propagation proceeds through three phases. In
the initial phase, the number of hosts increases exponentially. To see that this is so,
consider a simplified case in which a worm is launched from a single host and infects
two nearby hosts. Each of these hosts infects two more hosts, and so on. This results
in exponential growth. After a time, infecting hosts waste some time attacking
already infected hosts, which reduces the rate of infection. During this middle phase,
growth is approximately linear, but the rate of infection is rapid. When most vulner-
able computers have been infected, the attack enters a slow finish phase as the
worm seeks out those remaining hosts that are difficult to identify.

>The complete list is provided at this book’s Web site.

21-20

CHAPTER 21 / MALICIOUS SOFTWARE

s
5 x 10
/ /
55 ‘
/| Slow finish |
é 4~ P phase -]
= 35
P
k>
: ot
=
5 25
'E Fast spread
2 h
E phase
Z
L5 j Slow start R
1E phase “
0.5
.
] 4_|/']]]
100 200 300 400 500 600

Time ¢ (minutes)

Figure 21.6 Worm Propagation Model

Clearly, the objective in countering a worm is to catch the worm in its slow
start phase, at a time when few hosts have been infected.

Recent Worm Attacks

The contemporary era of worm threats began with the release of the Code Red
worm in July of 2001. Code Red exploits a security hole in the Microsoft Internet
Information Server (IIS) to penetrate and spread. It also disables the system file
checker in Windows. The worm probes random IP addresses to spread to other hosts.
During a certain period of time, it only spreads. It then initiates a denial-of-service
attack against a government Web site by flooding the site with packets from numer-
ous hosts. The worm then suspends activities and reactivates periodically. In the
second wave of attack, Code Red infected nearly 360,000 servers in 14 hours. In addi-
tion to the havoc it caused at the targeted server, Code Red consumed enormous
amounts of Internet capacity, disrupting service.

Code Red II is a variant that targets Microsoft IISs. In addition, this newer
worm installs a backdoor, allowing a hacker to remotely execute commands on
victim computers.

In early 2003, the SQL Slammer worm appeared. This worm exploited a buffer
overflow vulnerability in Microsoft SQL server. The Slammer was extremely com-
pact and spread rapidly, infecting 90% of vulnerable hosts within 10 minutes. Late
2003 saw the arrival of the Sobig.f worm, which exploited open proxy servers to turn
infected machines into spam engines. At its peak, Sobig.f reportedly accounted for
one in every 17 messages and produced more than one million copies of itself within
the first 24 hours.

21.4 / WORMS 21-21

Mydoom is a mass-mailing e-mail worm that appeared in 2004. It followed a
growing trend of installing a backdoor in infected computers, thereby enabling
hackers to gain remote access to data such as passwords and credit card numbers.
Mydoom replicated up to 1000 times per minute and reportedly flooded the
Internet with 100 million infected messages in 36 hours.

A recent worm that rapidly became prevalent in a variety of versions is the
Warezov family of worms [KIRK06]. When the worm is launched, it creates several
executable in system directories and sets itself to run every time Windows starts, by
creating a registry entry. Warezov scans several types of files for e-mail addresses
and sends itself as an e-mail attachment. Some variants are capable of downloading
other malware, such as Trojan horses and adware. Many variants disable security
related products and/or disable their updating capability.

State of Worm Technology
The state of the art in worm technology includes the following:

* Multiplatform: Newer worms are not limited to Windows machines but can
attack a variety of platforms, especially the popular varieties of UNIX.

° Multi-exploit: New worms penetrate systems in a variety of ways, using
exploits against Web servers, browsers, e-mail, file sharing, and other network-
based applications.

o Ultrafast spreading: One technique to accelerate the spread of a worm is to
conduct a prior Internet scan to accumulate Internet addresses of vulnerable
machines.

* Polymorphic: To evade detection, skip past filters, and foil real-time analysis,
worms adopt the virus polymorphic technique. Each copy of the worm has
new code generated on the fly using functionally equivalent instructions and
encryption techniques.

° Metamorphic: In addition to changing their appearance, metamorphic worms
have a repertoire of behavior patterns that are unleashed at different stages of
propagation.

* Transport vehicles: Because worms can rapidly compromise a large number of
systems, they are ideal for spreading other distributed attack tools, such as
distributed denial of service bots.

e Zero-day exploit: To achieve maximum surprise and distribution, a worm
should exploit an unknown vulnerability that is only discovered by the general
network community when the worm is launched.

Mobile Phone Worms

Worms first appeared on mobile phones in 2004. These worms communicate
through Bluetooth wireless connections or via the multimedia messaging service
(MMS). The target is the smartphone, which is a mobile phone that permits users to
install software applications from sources other than the cellular network operator.
Mobile phone malware can completely disable the phone, delete data on the phone,
or force the device to send costly messages to premium-priced numbers.

21-22

CHAPTER 21 / MALICIOUS SOFTWARE

An example of a mobile phone worm is CommWarrior, which was launched in
2005. This worm replicates by means of Bluetooth to other phones in the receiving
area. It also sends itself as an MMS file to numbers in the phone’s address book and
in automatic replies to incoming text messages and MMS messages. In addition, it
copies itself to the removable memory card and inserts itself into the program
installation files on the phone.

Worm Countermeasures

There is considerable overlap in techniques for dealing with viruses and worms.
Once a worm is resident on a machine, antivirus software can be used to detect it. In
addition, because worm propagation generates considerable network activity, net-
work activity and usage monitoring can form the basis of a worm defense.

To begin, let us consider the requirements for an effective worm countermea-
sure scheme:

e Generality: The approach taken should be able to handle a wide variety of
worm attacks, including polymorphic worms.

¢ Timeliness: The approach should respond quickly so as to limit the number of
infected systems and the number of generated transmissions from infected
systems.

* Resiliency: The approach should be resistant to evasion techniques employed
by attackers to evade worm countermeasures.

* Minimal denial-of-service costs: The approach should result in minimal reduc-
tion in capacity or service due to the actions of the countermeasure software.
That is, in an attempt to contain worm propagation, the countermeasure
should not significantly disrupt normal operation.

* Transparency: The countermeasure software and devices should not require
modification to existing (legacy) OSs, application software, and hardware.

* Global and local coverage: The approach should be able to deal with attack
sources both from outside and inside the enterprise network.

No existing worm countermeasure scheme appears to satisfy all these require-
ments. Thus, administrators typically need to use multiple approaches in defending
against worm attacks.

CounTERMEASURE AprrroAcHES Following [JHIO7], we list six classes of worm
defense:

A. Signature-based worm scan filtering: This type of approach generates a worm
signature, which is then used to prevent worm scans from entering/leaving a
network/host. Typically, this approach involves identifying suspicious flows
and generating a worm signature. This approach is vulnerable to the use of
polymorphic worms: Either the detection software misses the worm or, if it is
sufficiently sophisticated to deal with polymorphic worms, the scheme may
take a long time to react. [NEWSO05] is an example of this approach.

B. Filter-based worm containment: This approach is similar to class A but focuses
on worm content rather than a scan signature. The filter checks a message to

21.4 / WORMS 21-23

determine if it contains worm code. An example is Vigilante [COSTO5], which
relies on collaborative worm detection at end hosts. This approach can be quite
effective but requires efficient detection algorithms and rapid alert dissemination.

C. Payload-classification-based worm containment: These network-based tech-
niques examine packets to see if they contain a worm. Various anomaly detection
techniques can be used, but care is needed to avoid high levels of false positives
or negatives. An example of this approach is reported in [CHINOS5], which looks
for exploit code in network flows. This approach does not generate signatures
based on byte patterns but rather looks for control and data flow structures that
suggest an exploit.

D. Threshold random walk (TRW) scan detection: TRW exploits randomness
in picking destinations to connect to as a way of detecting if a scanner is in
operation [JUNGO4]. TRW is suitable for deployment in high-speed, low-cost
network devices. It is effective against the common behavior seen in worm
scans.

E. Rate limiting: This class limits the rate of scanlike traffic from an infected host.
Various strategies can be used, including limiting the number of new machines a
host can connect to in a window of time, detecting a high connection failure rate,
and limiting the number of unique IP addresses a host can scan in a window of
time. [CHENO4] is an example. This class of countermeasures may introduce
longer delays for normal traffic. This class is also not suited for slow, stealthy
worms that spread slowly to avoid detection based on activity level.

F. Rate halting: This approach immediately blocks outgoing traffic when a
threshold is exceeded either in outgoing connection rate or diversity of con-
nection attempts [JHIO7]. The approach must include measures to quickly
unblock mistakenly blocked hosts in a transparent way. Rate halting can inte-
grate with a signature- or filter-based approach so that once a signature or fil-
ter is generated, every blocked host can be unblocked. Rate halting appears to
offer a very effective countermeasure. As with rate limiting, rate halting tech-
niques are not suitable for slow, stealthy worms.

We look now at two approaches in more detail.

Proactive Worm ContainvenT The PWC scheme [JHIO7] is host based rather
than being based on network devices such as honeypots, firewalls, and network
IDSs. PWC is designed to address the threat of worms that spread rapidly. The
software on a host looks for surges in the rate of frequency of outgoing connection
attempts and the diversity of connections to remote hosts. When such a surge is
detected, the software immediately blocks its host from further connection
attempts. The developers estimate that only a few dozen infected packets may be
sent out to other systems before PWC quarantines that attack. In contrast, the
Slammer worm on average sent out 4000 infected packets per second.

A deployed PWC system consists of a PWC manager and PWC agents in
hosts. Figure 21.7 is an example of an architecture that includes PWC. In this exam-
ple, the security manager, signature extractor, and PWC manager are implemented
in a single network device. In practice, these three modules could be implemented as
two or three separate devices.

21-24 CHAPTER 21 / MALICIOUS SOFTWARE

hosts

router

external
firewall

Worm management center
—Security manager
—Signature extractor
—PWC manager

hosts

Figure 21.7 Example PWC Deployment

The operation of the PWC architecture can be described as follows:

A. A PWC agent monitors outgoing traffic for scan activity, determined by a
surge in UDP or TCP connection attempts to remote hosts. If a surge is
detected, the agent performs the following actions: (1) issues an alert to local
system; (2) blocks all outgoing connection attempts; (3) transmits the alert to
the PWC manager; and (4) starts a relaxation analysis, described in D.

B. A PWC manager receives an alert. The PWC propagates the alert to all other
agents (beside the originating agent).

C. The host receives an alert. The agent must decide whether to ignore the alert, in
the following way. If the time since the last incoming packet has been sufficiently
long so that the agent would have detected a worm if infected, then the alert is
ignored. Otherwise, the agent assumes that it might be infected and performs the
following actions: (1) blocks all outgoing connection attempts from the specific
alerting port; and (2) starts a relaxation analysis, described in D.

D. Relaxation analysis is performed as follows. An agent monitors outgoing activ-
ity for a fixed window of time to see if outgoing connections exceed a thresh-
old. If so, blockage is continued and relaxation analysis is performed for
another window of time. This process continues until the outgoing connection
rate drops below the threshold, at which time the agent removes the block. If
the threshold continues to be exceeded over a sufficient number of relaxation
windows, the agent isolates the host and reports to the PWC manager.

21.4 / WORMS 21-25

Meanwhile, a separate aspect of the worm defense system is in operation. The
signature extractor functions as a passive sensor that monitors all traffic and
attempts to detect worms by signature analysis. When a new worm is detected, its
signature is sent by the security manager to the firewall to filter out any more copies
of the worm. In addition, the PWC manager sends the signature to PWC agents,
enabling them to immediately recognize infection and disable the worm.

NeTwork-Basep Worm Derense The key element of a network-based worm
defense is worm monitoring software. Consider an enterprise network at a site,
consisting of one or an interconnected set of LANs. Two types of monitoring
software are needed:

* Ingress monitors: These are located at the border between the enterprise net-
work and the Internet. They can be part of the ingress filtering software of a bor-
der router or external firewall or a separate passive monitor. A honeypot can
also capture incoming worm traffic. An example of a detection technique for an
ingress monitor is to look for incoming traffic to unused local IP addresses.

* Egress monitors: These can be located at the egress point of individual LANs
on the enterprise network as well as at the border between the enterprise net-
work and the Internet. In the former case, the egress monitor can be part of
the egress filtering software of a LAN router or switch. As with ingress moni-
tors, the external firewall or a honeypot can house the monitoring software.
Indeed, the two types of monitors can be collocated. The egress monitor is
designed to catch the source of a worm attack by monitoring outgoing traffic
for signs of scanning or other suspicious behavior.

Worm monitors can act in the manner of intrusion detection systems and gen-
erate alerts to a central administrative system. It is also possible to implement a sys-
tem that attempts to react in real time to a worm attack, so as to counter zero-day
exploits effectively. This is similar to the approach taken with the digital immune
system (Figure 21.4).

Figure 21.8 shows an example of a worm countermeasure architecture [SIDI0S].
The system works as follows (numbers in figure refer to numbers in the following list):

1. Sensors deployed at various network locations detect a potential worm. The
sensor logic can also be incorporated in IDS sensors.

2. The sensors send alerts to a central server that correlates and analyzes the incom-
ing alerts. The correlation server determines the likelihood that a worm attack is
being observed and the key characteristics of the attack.

3. The server forwards its information to a protected environment, where the
potential worm may be sandboxed for analysis and testing.

4. The protected system tests the suspicious software against an appropriately
instrumented version of the targeted application to identify the vulnerability.

W

The protected system generates one or more software patches and tests these.

6. If the patch is not susceptible to the infection and does not compromise the
application’s functionality, the system sends the patch to the application host
to update the targeted application.

21-26 CHAPTER 21 / MALICIOUS SOFTWARE

Internet

-

Enterprise network Firewall >
f‘/f //

Sensor < ’/;//":.{‘ g ’/

1. Worm scans or
infection attempts

Correlation
server

sensor

Honeypot

R te sensor
Application
server

6. Application update

3. Forward
features

Sandboxed |Hypothesis testing| s p. b1 fix generation

environment and analysis \
Patch
4. Vulnerability generation
testing and

identification

Instrumented applications

Figure 21.8 Placement of Worm Monitors

The success of such an automated patching system depends on maintaining a
current list of potential attacks and developing general tools for patching software
to counter such attacks. Examples of approaches are as follows:

¢ Increasing the size of buffers

» Using minor code-randomization techniques [BHATO03] so that the infection
no longer works because the code to be attacked is no longer in the same form
and location

* Adding filters to the application that enable it to recognize and ignore an attack

21.5 DISTRIBUTED DENIAL OF SERVICE ATTACKS

Distributed denial of service (DDoS) attacks present a significant security threat to
corporations, and the threat appears to be growing [VIJA02]. In one study, covering
a three-week period in 2001, investigators observed more than 12,000 attacks
against more than 5000 distinct targets, ranging from well-known ecommerce com-
panies such as Amazon and Hotmail to small foreign ISPs and dial-up connections
[MOORO1]. DDoS attacks make computer systems inaccessible by flooding servers,
networks, or even end user systems with useless traffic so that legitimate users can
no longer gain access to those resources. In a typical DDoS attack, a large number of

21.5 / DISTRIBUTED DENIAL OF SERVICE ATTACKS 21-27

compromised hosts are amassed to send useless packets. In recent years, the attack
methods and tools have become more sophisticated, effective, and more difficult to
trace to the real attackers, while defense technologies have been unable to with-
stand large-scale attacks [CHANO2].

A denial of service (DoS) attack is an attempt to prevent legitimate users of a
service from using that service. When this attack comes from a single host or net-
work node, then it is simply referred to as a DoS attack. A more serious threat is
posed by a DDoS attack. In a DDoS attack, an attacker is able to recruit a number
of hosts throughout the Internet to simultaneously or in a coordinated fashion
launch an attack upon the target. This section is concerned with DDoS attacks. First,
we look at the nature and types of attacks. Next, we examine means by which an
attacker is able to recruit a network of hosts for attack launch. Finally, this section
looks at countermeasures.

DDoS Attack Description

A DDoS attack attempts to consume the target’s resources so that it cannot provide
service. One way to classify DDoS attacks is in terms of the type of resource that is
consumed. Broadly speaking, the resource consumed is either an internal host
resource on the target system or data transmission capacity in the local network to
which the target is attacked.

A simple example of an internal resource attack is the SYN flood attack.
Figure 21.9a shows the steps involved:

1. The attacker takes control of multiple hosts over the Internet, instructing
them to contact the target Web server.

2. The slave hosts begin sending TCP/IP SYN (synchronize/initialization) packets,
with erroneous return IP address information, to the target.

3. Each SYN packet is a request to open a TCP connection. For each such
packet, the Web server responds with a SYN/ACK (synchronize/acknowl-
edge) packet, trying to establish a TCP connection with a TCP entity at a spu-
rious IP address. The Web server maintains a data structure for each SYN
request waiting for a response back and becomes bogged down as more traffic
floods in. The result is that legitimate connections are denied while the victim
machine is waiting to complete bogus “half-open” connections.

The TCP state data structure is a popular internal resource target but by no
means the only one. [CERTO01] gives the following examples:

1. In many systems, a limited number of data structures are available to hold
process information (process identifiers, process table entries, process slots, etc.).
An intruder may be able to consume these data structures by writing a simple
program or script that does nothing but repeatedly create copies of itself.

2. Anintruder may also attempt to consume disk space in other ways, including
e generating excessive numbers of mail messages
° intentionally generating errors that must be logged

¢ placing files in anonymous ftp areas or network-shared areas

syoeny soq ordwis jo sojdwexyg 'z 2andng
yoene JINDI pAnqLisic (e)

o WRAA AAAN

@ \\|||.\\\ N~

I9)N0I @

1931, Yy

. ® -— Quyorw
N yoeny

Yoene poofy NAS pamquusi((v)

SIOAIOS
AAR[S
JOAIAS @ _H_ i o m
I 1031e
M3 L syoyoed m
SOV/NAS o= ® %
0
e) e | _H_ R e}
d a 0
NENpld NEpld T
NAS nas O outyoet
0 yoeny
© 1
|| B S

21-28

21.5 / DISTRIBUTED DENIAL OF SERVICE ATTACKS 21-29

Figure 21.9b illustrates an example of an attack that consumes data transmis-
sion resources. The following steps are involved:

1. The attacker takes control of multiple hosts over the Internet, instructing
them to send ICMP ECHO packets® with the target’s spoofed IP address to a
group of hosts that act as reflectors, as described subsequently.

N

Nodes at the bounce site receive multiple spoofed requests and respond by send-
ing echo reply packets to the target site.

3. The target’s router is flooded with packets from the bounce site, leaving no
data transmission capacity for legitimate traffic.

Another way to classify DDoS attacks is as either direct or reflector DDoS
attacks. In a direct DDoS attack (Figure 21.10a), the attacker is able to implant zom-
bie software on a number of sites distributed throughout the Internet. Often, the
DDoS attack involves two levels of zombie machines: master zombies and slave zom-
bies. The hosts of both machines have been infected with malicious code. The attacker
coordinates and triggers the master zombies, which in turn coordinate and trigger
the slave zombies. The use of two levels of zombies makes it more difficult to trace the
attack back to its source and provides for a more resilient network of attackers.

A reflector DDoS attack adds another layer of machines (Figure 21.10b). In
this type of attack, the slave zombies construct packets requiring a response that
contains the target’s IP address as the source IP address in the packet’s IP header.
These packets are sent to uninfected machines known as reflectors. The uninfected
machines respond with packets directed at the target machine. A reflector DDoS
attack can easily involve more machines and more traffic than a direct DDoS attack
and hence be more damaging. Further, tracing back the attack or filtering out the
attack packets is more difficult because the attack comes from widely dispersed
uninfected machines.

Constructing the Attack Network

The first step in a DDoS attack is for the attacker to infect a number of machines
with zombie software that will ultimately be used to carry out the attack. The essen-
tial ingredients in this phase of the attack are the following:

1. Software that can carry out the DDoS attack. The software must be able to run
on a large number of machines, must be able to conceal its existence, must be
able to communicate with the attacker or have some sort of time-triggered
mechanism, and must be able to launch the intended attack toward the target.

2. A vulnerability in a large number of systems. The attacker must become aware of
a vulnerability that many system administrators and individual users have failed
to patch and that enables the attacker to install the zombie software.

3. A strategy for locating vulnerable machines, a process known as scanning.

3The Internet Control Message Protocol (ICMP) is an IP-level protocol for the exchange of control pack-
ets between a router and a host or between hosts. The ECHO packet requires the recipient to respond
with an echo reply to check that communication is possible between entities.

CHAPTER 21 / MALICIOUS SOFTWARE

Attacker

Master
zombies

zombies

@ Victim

(a) Direct DDoS Attack

Attacker

Master
°2 zombies

@ Victim

(b) Reflector DDoS Attack
Figure 21.10 Types of Flooding-Based DDoS Attacks

In the scanning process, the attacker first seeks out a number of vulnerable
machines and infects them. Then, typically, the zombie software that is installed in
the infected machines repeats the same scanning process, until a large distributed
network of infected machines is created. [MIRKO04] lists the following types of scan-
ning strategies:

° Random: Each compromised host probes random addresses in the IP address
space, using a different seed. This technique produces a high volume of

21.6 / RECOMMENDED READING AND WEB SITES 21-31

Internet traffic, which may cause generalized disruption even before the actual
attack is launched.

e Hit-List: The attacker first compiles a long list of potential vulnerable
machines. This can be a slow process done over a long period to avoid detec-
tion that an attack is underway. Once the list is compiled, the attacker begins
infecting machines on the list. Each infected machine is provided with a
portion of the list to scan. This strategy results in a very short scanning period,
which may make it difficult to detect that infection is taking place.

e Topological: This method uses information contained on an infected victim
machine to find more hosts to scan.

* Local subnet: If a host can be infected behind a firewall, that host then looks
for targets in its own local network. The host uses the subnet address structure
to find other hosts that would otherwise be protected by the firewall.

DDoS Countermeasures

In general, there are three lines of defense against DDoS attacks [CHANO2]:

e Attack prevention and preemption (before the attack): These mechanisms
enable the victim to endure attack attempts without denying service to legiti-
mate clients. Techniques include enforcing policies for resource consumption
and providing backup resources available on demand. In addition, prevention
mechanisms modify systems and protocols on the Internet to reduce the possi-
bility of DDoS attacks.

e Attack detection and filtering (during the attack): These mechanisms attempt to
detect the attack as it begins and respond immediately. This minimizes the impact
of the attack on the target. Detection involves looking for suspicious patterns of
behavior. Response involves filtering out packets likely to be part of the attack.

* Attack source traceback and identification (during and after the attack): This
is an attempt to identify the source of the attack as a first step in preventing
future attacks. However, this method typically does not yield results fast
enough, if at all, to mitigate an ongoing attack.

The challenge in coping with DDoS attacks is the sheer number of ways in
which they can operate. Thus DDoS countermeasures must evolve with the threat.

21.6 RECOMMENDED READING AND WEB SITES

For a thorough understanding of viruses, the book to read is [SZORO05]. Another excellent
treatment is [AYCOO06]. Good overview articles on viruses and worms are [CASS01],
[FORRY7], [KEPH97a], and [NACH97]. [MEINO1] provides a good treatment of the Code
Red worm. [WEAVO03] is a comprehensive survey of worm characteristics. [HYPPO06] dis-
cusses worm attacks on mobile phones.

[PATRO4] is a worthwhile survey of DDoS attacks. [MIRKO04] is a thorough description
of the variety of DDoS attacks and countermeasures. [CHANO2] is a good examination of
DDoS defense strategies.

21-32 CHAPTER 21 / MALICIOUS SOFTWARE

AYCO06 Aycock,J. Computer Viruses and Malware. New York: Springer, 2006.
CASS01 Cass, S. “Anatomy of Malice.” I[EEE Spectrum, November 2001.

CHANO02 Chang,R.“Defending Against Flooding-Based Distributed Denial-of-Service
Attacks: A Tutorial.” [EEE Communications Magazine, October 2002.

FORRY97 Forrest, S.; Hofmeyr, S.; and Somayaji, A. “Computer Immunology.”
Communications of the ACM, October 1997.

HYPP06 Hypponen, M. “Malware Goes Mobile.” Scientific American, November 2006.

KEPH97a Kephart, J.; Sorkin, G.; Chess, D.; and White, S. “Fighting Computer Viruses.”
Scientific American, November 1997.

MEINO1 Meinel, C. “Code Red for the Web.” Scientific American, October 2001.

MIRKO04 Mirkovic, J., and Relher, P. “A Taxonomy of DDoS Attack and DDoS Defense
Mechanisms.” ACM SIGCOMM Computer Communications Review, April 2004.

NACHY97 Nachenberg, C. “Computer Virus-Antivirus Coevolution.” Communications
of the ACM, January 1997.

PATRO04 Patrikakis, C.; Masikos, M.; and Zouraraki, O. “Distributed Denial of Service
Attacks.” The Internet Protocol Journal, December 2004.

SZORO05 Szor, P, The Art of Computer Virus Research and Defense. Reading, MA:
Addison-Wesley, 2005.

WEAV03 Weaver, N, et al. “A Taxonomy of Computer Worms.” The First ACM
Workshop on Rapid Malcode (WORM),2003.

Recommended Web Sites:

o AntiVirus Online: IBM’s site on virus information.

* Vmyths: Dedicated to exposing virus hoaxes and dispelling misconceptions about real
viruses.

¢ VirusList: Site maintained by commercial antivirus software provider. Good collection
of useful information.

* DDoS Attacks/Tools: Extensive list of links and documents.

21.7 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms
backdoor distributed denial of service macro virus
behavior-blocking software (DDoS) malicious software
blended attack downloaders malware
boot-sector virus e-mail virus metamorphic virus
digital immune system flooder mobile code
direct DDoS attack logic bomb parasitic virus

21.7 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 21-33

polymorphic virus stealth virus virus
reflector DDoS attack trapdoor worm
scanning Trojan horse zero-day exploit

Review Questions

21.1 What is the role of compression in the operation of a virus?

21.2 What is the role of encryption in the operation of a virus?

21.3 What are typical phases of operation of a virus or worm?

21.4 What is a digital immune system?

21.5 How does behavior-blocking software work?

21.6 In general terms, how does a worm propagate?

21.7 Describe some worm countermeasures.

21.8 Whatis a DDoS?

Problems

21.1 There is a flaw in the virus program of Figure 21.1. What is it?

21.2 The question arises as to whether it is possible to develop a program that can analyze
a piece of software to determine if it is a virus. Consider that we have a program D
that is supposed to be able to do that. That is, for any program P, if we run D(P), the
result returned is TRUE (P is a virus) or FALSE (P is not a virus). Now consider the
following program:

Program CV :=
éain—program i=
{if D(CV) then goto next:
else infect-executable;
}
next:
}
In the preceding program, infect-executable is a module that scans memory for exe-
cutable programs and replicates itself in those programs. Determine if D can correctly
decide whether CV is a virus.
21.3 The point of this problem is to demonstrate the type of puzzles that must be solved in

the design of malicious code and therefore, the type of mindset that one wishing to
counter such attacks must adopt.
a. Consider the following C program:

begin

print (*begin print (); end.*);
end
What do you think the program was intended to do? Does it work?

b. Answer the same questions for the following program:

char [] :{|O|, 1 l’ |}|, l;l’ |m|, lal’ |i|, lnl’
u(ul ‘)‘/ u{ul andsoon... 'tll ‘)‘/ uou};
main ()
{
int I;

printf (*char t[] = (*);

21-34 CHAPTER 21 / MALICIOUS SOFTWARE

for (i=0; t[i]!=0; i=1i+1)
printf("%d, ", tl[il);
printf ("%s", t);
}

c. What is the specific relevance of this problem to this chapter?
21.4 Consider the following fragment:

legitimate code

if data is Friday the 13th;
crash_computer () ;

legitimate code

What type of malicious software is this?
21.5 Consider the following fragment in an authentication program:

username = read_username () ;

password = read_password() ;

if username is "133t h4ckOr"
return ALLOW_LOGIN;

if username and password are valid
return ALLOW_LOGIN

else return DENY_ LOGIN

What type of malicious software is this?

21.6 The following code fragments show a sequence of virus instructions and a metamor-
phic version of the virus. Describe the effect produced by the metamorphic code.

Original Code Metamorphic Code

mov eax, 5 mov eax, 5

add eax, ebx push ecx

call [eax] pop ecx
add eax, ebx
swap eax, ebx
swap ebx, eax
call [eax]
nop

21.7 The list of passwords used by the Morris worm is provided at this book’s Web site.
a. The assumption has been expressed by many people that this list represents words
commonly used as passwords. Does this seem likely? Justify your answer.
b. If the list does not reflect commonly used passwords, suggest some approaches
that Morris may have used to construct the list.

21.8 Suggest some methods of attacking the PWC worm defense that could be used by
worm creators and suggest countermeasures to these methods.

