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E.1 OPERATIONS ON VECTORS AND MATRICES

We use the following conventions:

3y ay  ap a,
(x1 X, xm) Y2 a:21 ay ayy
y n aml an2 e amn

row vector X column vector Y matrix A

Note that in a matrix, the first subscript of an element refers to the row and

the second subscript refers to the column.

Arithmetic
Two matrices of the same dimensions can be added or subtracted element by

element. Thus, for C = A + B, the elements of C are ¢;; = a;; + b;;.

1 -2 3 (3 0 -6 4 -2 3
Example: 0 4 5{+2 -3 1(=|2 1 6
36 9/19 6 3 12 12 12

To multiply a matrix by a scalar, every element of the matrix is multiplied

by the scalar. Thus, for C = kA, we have Cij = k x aj.

1 -2 3\ (3 -6 9
Example: 30 4 5(=|0 12 15
36 9/ \9 18 27
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The product of a row vector of dimension m and a column vector of

dimension m is a scalar:

N

Y2

(X X)) x| T2 =y Y, Y,

Ym

Two matrices A and B are conformable for multiplication, in that order, if
the number of columns in A is the same as the number of rows in B. Let A be of
order mxn (m rows and n columns) and B be of order nxp. The product is obtained
by multiply every row of A into every column of B, using the rules just defined for
the product of a row vector and a column vector. Thus, for C = AB, we have

n
;= Eaikbkj , and the resulting matrix is of order mxp. Notice that, by these rules,
k=1
we can multiply a row vector by a matrix that has the same number of rows as the
dimension of the vector; and we can multiply a matrix by a column vector if the
matrix has the same number of columns as the dimension of the vector. Thus,
using the notation at the beginning of this section: For D = XA, we end up with a

m
row vector with elements d; = Exkaki .For E = AY, we end up with a column
k=1

m
vector with elements e, = Eaik Vg -

k=1
Example:
1 2 3
(2 -5 3)|0 4 5|=(2+3x3 2x(-2)+(-5)x4+3x6 2x3+(-5)x5+3x9)=(11 6 8)
3.6 9
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1 =2 3\ 2 1X2+(—2)X(—5)+3X3 21
Example: (O 4 5]{—5J= 4x(-5)+5x%3 =[—5]

3x2+6x(=5)+9x3

Determinants

The determinant of the square matrix A, denoted by det(A), is a scalar value representing sums
and products of the elements of the matrix. For details, see any text on linear algebra. Here, we

simply report the results.

For a 2x2 matrix A, det(A) = ay a5, — ayya;,.

For a 3x3 matrix A, det(A) = Cll 161226133 + a12a23a31 + 0130216132
—a31app413 — d3pdp3dy] — 433421912

In general, the determinant of a square matrix can be calculated in terms of its cofactors. A

cofactor of A is denoted by cofl-j(A) and is defined as the determinant of the reduced matrix

formed by deleting the ith row and jth column of A and choosing positive sign if i + j is even and

the negative sign if i + j is odd. For example:

2 4
cof;] 6 1
1

3
5 =—det(_22 ‘1‘)=-10
201 3

The determinant of an arbitrary 72Xn square matrix can be evaluated as:

det(A) = i[aijcofu (A)] for any i
j=l
or

det(A) = i[a,.jcof,.j (A)] forany,

i=1
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For example:

2 4 3
detf 6 1 5|=a,cof,+a,,cof ,+a,;cof
-2 1 3

1 3 2 3 2 1
= 6(-9) + 1(12) + 5(-10) = =92

=6x(_det(4 3))+1xdet(_2 3)+5x(—det(2 4))

Inverse of a Matrix

If a matrix A has a nonzero determinant, then it has an inverse, denoted as A_l. The inverse has

that property that AATT=A"TA = I, where I is the matrix that is all zeros except for ones along
the main diagonal from upper left to lower right. I is known as the identity matrix because any

vector or matrix multiplied by I results in the original vector or matrix. The inverse of a matrix is

calculated as follows. For B = A_1 ,

_ cof ,(A)

J

a det(A)

For example, if A is the matrix in the preceding example, then for the inverse matrix B, we

can calculate:

b cof,,(A) -10 10
0 det(A) -92 92

Continuing in the fashion, we can compute all nine elements of B. Using Sage, we can

easily calculate the inverse:

D-5



sage: A Matrix([[2,4,3]1,[6,1,5]1,[-2,1,3]11)

[ 1/46 9/92 -17/92]
[ 7/23 =3/23 -=2/23]
[ -2/23 5/46 11/46]

And we have:

4
1
2 1
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E.2 LINEAR ALGEBRA OPERATIONS OVER Z,,

Arithmetic operations on vectors and matrices can be carried out over 7. that is, all operations

can be carried out modulo n. The only restriction is that division is only allowed if the divisor

has an multiplicative inverse in Z . For our purposes, we are interested primarily in operations
over Z,¢. Because 26 is not a prime, not every integer in Z, has a multiplicative inverse. Table

E.1 lists all the multiplicative inverses modulo 26. For example 3 x 9 = 1 mod 26, so 3 and 9 are

multiplicative inverses of each other.

Table 1.1 Multiplicative Inverses mod 26

Value Inverse Value Inverse
1 1 15 7
3 9 17 23
5 21 19 11
7 15 21 5
9 3 23 17
11 19
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4 3

As an example, consider the following matrix in Z¢. A = (9 6

). Then,

det(A)=(4 x 6) — (3 x 9) mod 26 = -3 mod 26 = 23

From Table E.1, we have (det(A))_1 = 17. We can now calculate the inverse matrix:

A‘1=(det(A))_1(Eggigi; 2§£Z;Eig)=l7x(_69 Dmoazs-(% L)

To verify:

Lo(4 3\24 1 105 52 10
AA =(9 6)(3 16)m0d26=(234 105)m0d26=(0 1)

Lo (24 14 3 105 78 10
A A=(3 16)(9 6)m0d26=(156 105)m°d26=(0 1)
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