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In this appendix, we look at measures of secrecy and security of cryptosystems from two 

different points of view. First, we use concepts of conditional probability, and then reformulate 

the results obtained in terms of entropy, which in turn depends on concepts of condition 

probability. The reader should first review the discussion of conditional probability and Bayes' 

theorem in Appendix 20A. 

 All of the concepts in this Appendix were first introduced in Shannon's landmark 1949 

paper [SHAN49], which is included in the Document section of this book's Web site. 

 

F.1  PERFECT SECRECY1 

 

What does it mean that a crypto system is secure? Of course, if the adversary finds the entire 

plaintext or the entire secret key, that would be a severe failure. But even if the adversary finds a 

small part of the plaintext or the key, or even if the adversary determines that, say, the first letter 

of the plaintext is more likely to be an A than the usual frequency of an A at the beginning of a 

word in a typical English text, that would also be a weakness. 

 Idea: A cryptosystem is secure to an attack if the adversary does not learn anything after 

the attack compared to what he knew before the attack. In this section, we consider the case of 

the ciphertext-only attack. The other types of attacks can be formalized similarly. We define two 

types of secrecy: 

 

• Perfect secrecy: the adversary does not learn anything, no matter her computational power 

and how much time the attack takes. This is the ideal, but cannot be realized by practical 

cryptosystems. 

• Computational secrecy: the adversary does not learn anything unless she is performing 

more than N operations, where N is some huge number (so that the attack takes thousands 

of years). This is good enough and may be achieved by practical cryptosystems. 

 

 

                                                

1  This section is based on notes provided by Marius Zimand of Towson State University. 
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 To formally define the notion of secrecy we first, we introduce some notation: 

 

• M is a random variable that denotes a message chosen from the set of messages M. M is 

characterized by its distribution (see example below). 

• K is a random variable that denotes the encryption key chosen from the set of keys K. The 

key K is chosen uniformly at random (i.e., all the keys are equally likely). 

• C is the encryption of M, i.e., C = E(K, M) 

 

 

 Simple example: Suppose the message comes from a military base. To keep things simple, 

let us assume that the base sends only three messages: "nothing to report," "attack with 5 planes" 

and "attack with 10 planes.". Then 

 

M = {"nothing to report," "attack with 5 planes," "attack with 10 planes"} 

 

 This is called the set of messages. We can endow a set of messages with a probability 

distribution (in short, just distribution), indicating how likely each message is. For example, one 

possible distribution can be 

 

! 

M =
nothing to report attack with 5 planes attack with 10 planes

0.6 0.3 0.1

" 

# 
$ 

% 

& 
'  

 

 We should assume that the attacker knows the distribution M (similar to knowing the 

frequency of letters in English). 

 We are now in a position to formally define the term perfect secrecy, or perfect security. 

Before doing so, it is instructive to quote Shannon's description. 

 

“Perfect Secrecy” is defined by requiring of a system that after a cryptogram is 

intercepted by the enemy the a posteriori probabilities of this cryptogram 

representing various messages be identically the same as the a priori probabilities 

of the same messages before the interception. It is shown that perfect secrecy is 

possible but requires, if the number of messages is finite, the same number of 
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possible keys. If the message is thought of as being constantly generated at a 

given “rate” R, key must be generated at the same or a greater rate. 

 

 We develop two different versions or the definition of perfect secrecy.. 

 

Definition 1. An encryption scheme over message space M is perfectly secure- version 1 

if for all distributions M over M, for any fixed message m and for any fixed ciphertext c, 

we have 

Pr[M = m | E(K, M) = c] = Pr[M = m] 

 

 Here the probabilities are taken over the distribution M and over choosing the key K 

uniformly at random in the space of all keys. We can make the following observations. 

 

 1. The definition is equivalent to saying that M and E(K, M) are independent. 

 2. What the definition is saying: The distribution on M is supposed to be known by the 

adversary. We just want that the cryptosystem does not leak any additional information. 

This is captured in the definition by saying that knowing the ciphertext c does not change 

the distribution M. 

 3. We have argued intuitively (Section 2.2) that the one-time pad has the above property. 

Now we can prove this assertion rigorously. 

 

Theorem 1. A one-time pad is perfectly secure. 

Proof of a special case (the general case is similar): Let M = {0; 1} - just two messages. Let us 

denote C = E(K, M) = K ! M. We first show that 

 

  

! 

Pr M = 0 |C = 0[ ] =
Pr M = 0!C = 0[ ]

Pr C = 0[ ]
=
Pr M = 0!M "K = 0[ ]

Pr C = 0[ ]

=
Pr M = 0!K = 0[ ]

Pr C = 0[ ]
=
Pr M = 0[ ]Pr K = 0[ ]

Pr C = 0[ ]
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 Now we show that Pr[K = 0] = Pr[C = 0] = 1/2. Therefore, these two terms cancel in the 

above equation yielding Pr[M = 0 | C = 0] = Pr[M = 0]. The same argument applies for the other 

combinations of M and C. 

 

 Pr[K = 0] = 1/2 is immediate, because there are 2 equally likely keys (namely 0 and 1). 

 Pr[C = 0] = Pr[M = 0 " K = 0] + Pr[M = 1 " K = 1] 

  = Pr[M = 0] # Pr[K = 0] + Pr[M = 1] # Pr[K = 1] 

  = Pr[M = 0] # 1/2 + Pr[M = 1] # 1/2 

  = 1/2 # (Pr[M = 0] + Pr[M = 1]) 

  = 1/2 

 

 In the case of the one-time pad cryptosystem, the key is as long as the message, which 

means that the space of keys is as large as the space of messages. The next theorem shows that 

this is the case for any encryption scheme that is perfectly secure-version 1. In other words, any 

encryption scheme that is perfectly secure-version 1 suffers from the same impracticality 

issue as the one-time pad. 

 Notation: ||A|| denotes the number of elements of the finite set A. 

 

Theorem 2. If an encryption scheme is perfectly secure-version 1 over message space M, 

then the set of keys K must satisfy ||K|| ! ||M||. 

Proof. Let c be a ciphertext. Suppose ||K|| < ||M||. Then when we decrypt c with all 

possible keys, we obtain at most ||K|| possible plaintexts. So there is a message m that is 

not obtained. Then Pr[M = m | C = c] = 0. But clearly we can make a distribution with 

P(M = m) > 0, so this probability relation violates the definition of perfectly secure-version 1. 

 Thus if for example we look at messages that are say 1000 bits long, there are 21000 

possible messages, and we need at least 21000 keys, so a key on average must be at least 

1000 bits long. So, a perfectly secure version 1 is too much to ask, because it can be 

achieved only by very impractical encryption schemes (such as one-time pad). 

The definition of an encryption that is perfectly secure - version 1 may seem to be too 

abstract and not be very convincing. Let us try another attempt for defining secrecy. This 
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definition has the merit that it models the fact that the adversary does not get anything if 

she is doing a ciphertext-only attack. 

 

Definition 2. An encryption scheme over message set M is perfectly secure- version 2 if 

for any two messages m
1
 and m

2
 in M and for any algorithm A, we have 

 

Pr[A(C) = m
1
 | C = E(K, m

1
)] = Pr[A(C) = m

1
 | C = E(K, m

2
)] 

 

We can make the following observations. 

 

 1. Think of A as an attacker that wants to guess whether C is the encryption of m
1
 or of m

2
. 

 2. The definition assumes that the enemy does a ciphertext-only attack, because A has as 

input only C. Security against the other kind of attacks can be defined (more or less) 

similarly. 

 3. The probabilities are taken over the random choice of the key from K (and the random 

decisions of A if A is a probabilistic algorithm). 

 4. Instead of equality, suppose that the left-hand side of the above equation is greater than 

the right-hand side. A successful attacker would have the left-hand side big (ideally 1) 

and the right-hand side small (ideally 0). 

 5. The definition says that A is not doing any better at guessing the message when it is given 

an encryption of m
1
 than when it is given an encryption of m

2
. 

 

Theorem 2. perfectly secure - version 2 = perfectly secure - version 1. (this means that 

an encryption scheme is secure according to version 1 if and only if it is secure according 

to version 2). 

 We omit the proof. It is not hard, but it is long. 

 Thus perfectly secure - version 2 cannot be achieved by practical encryption schemes 

either. So we adopt a more relaxed definition, which is computational secrecy. 

 

Definition 3. Let $ be a small parameter (e.g., $ = 0:0001) and N be a large parameter 
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(e.g., N = 1080). An encryption scheme over message space M is computational secure 

(with parameters $ and N) if for any two messages m
1
 and m

2
 in M and for any algorithm 

A that performs N operations, we have: 

 

|Pr[A(C) = m
1
 | C = E(K, m

1
)] – Pr[A(C) = m

1
 | C = E(K, m

2
)]| < $ 

 

We can make the following observations. 

 

 1. There are two relaxations compared with "perfectly secure - version 2." 

 •We don't require equality between the two probabilities, just closeness within $. 

 •And it is acceptable if the attacker can break the system by doing a huge number of 

operations: if an attacker must spend billions of year to break the cryptosystem, then 

the cryptosystem is considered secure. 

 2. The above definition only defines security against ciphertext-only attacks. In the same 

spirit, we can define computational secrecy against stronger types of attacks, such as 

chosen plaintext attack, or chosen ciphertext attack. 

 3. What should be the concrete values for N (the number of operation we allow the 

adversary to do) and $ (the bias we allow the adversary to achieve)? A common 

recommendations is that it is acceptable if no adversary running for at most N = 280 CPU 

cycles can break the system with probability greater than 2–64. 

 

 Let's get a feel for these values. Computation on the order of N = 260 is barely within 

reach today. Running on a 3-GHz computer (that executes 3 # 109 cycles per second), 260 

cycles require 260/(3 # 109) seconds or about 12 years. 280 is 220 % 106 times longer than 

that. The number of seconds since the Big Bang is estimated to be in the order of 

258. 

 An event that occurs once every hundred years can be roughly estimated to occur with 

probability 2–30 in any given second. Something that occurs with probability 2–60 in 

any given second is 230 times less likely and might be expected to occur roughly once 

every 100 billion years. 
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F.2  INFORMATION AND ENTROPY 

 

At the heart of information theory are two mathematical concepts with names that can be 

misleading: information and entropy. Typically, one thinks of information as having something 

to do with meaning; entropy is a term familiar from the second law of thermodynamics. In the 

discipline of information theory, information has to do with the reduction in the uncertainty 

about an event and entropy is an averaging of information values that happens to have a 

mathematical form identical to that for thermodynamic entropy. 

 Let us approach this new definition of information by way of an example. Imagine an 

investor who needs information (advice) about the status of certain securities, and who consults a 

broker with special information (knowledge) in that area. The broker informs (tells) the investor 

that, by coincidence, a federal investigator had come by just that morning seeking information 

about (evidence of) possible fraud by the corporation issuing that particular stock. In response to 

this information (data), the investor decides to sell, and so informs (notifies) the broker. 

 Put another way, being uncertain how to evaluate a portion of her portfolio, the client 

consults someone more certain than she about this side of the market. The broker relieves his 

client's uncertainty about relevant happenings by recounting the visit of the federal investigator, 

who had uncertainties to resolve of a professional nature. As an upshot of her increased certainty 

about the state of her securities, the client removes any uncertainty in the mind of the broker 

about her intention to sell. 

 Although the term information may signify notification, knowledge, or simply data, in each 

case the imparting of information is equivalent to the reduction in uncertainty. Information thus 

signifies the positive difference between two uncertainty levels. 

 

Information 

If we are to deal with information mathematically, then we need some quantity that is 

appropriate for measuring the amount of information. This problem was first raised, and solved, 

by Hartley in 1928 while studying telegraph communication. Hartley observed that if the 

probability that an event will occur is high (close to 1), there is little uncertainty that it will 

occur. If we subsequently learn that it has occurred, then the amount of information gained is 
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small. Thus, one plausible measure is the reciprocal of the probability of the occurrence of an 

event: 1/p. For example, an event that has an initial probability of occurrence of 0.25 conveys 

more information by its occurrence than one with an initial probability of 0.5. If the measure of 

information is 1/p, then the occurrence of the first event conveys an information value of 4 

(1/0.25) and the occurrence of the second event conveys an information value of 2 (1/0.5). But 

there are two difficulties in using this measure of information: 

 

 1. This measure does not seem to "work" for sequences of events. Consider a binary source 

that issues a stream of ones and zeros with equal probability of a one or zero for each bit. 

Thus, each bit has an information value of 2 (1/0.5). But if bit b
1
 conveys a value of 2, 

what is the information conveyed by the string of two bits b
1
b

2
? This string can take on 

one of four possible outcomes, each with probability 0.25; therefore, by the 1/p measure, 

an outcome conveys an information value of 4. Similarly, the information value of 3 bits 

(b
1
b

2
b

3
) is eight. This means that b

2
 adds two units of information to the two of b

1
, which 

is reasonable because the 2 bits have the same information value. But b
3
 will add an 

additional four units of information. Extending the sequence, b
4
 will add eight units of 

information, and so on. This does not seem reasonable as a measure of information. 

 2. Consider an event that gives rise to two or more independent variables. An example is a 

phase-shift-keying (PSK) signal that uses four possible phases and two amplitudes. A 

single signal element yields two units of information for the amplitude and four for the 

phase, for a total of six units by our measure. Yet each signal element is one of eight 

possible outcomes and hence ought to yield eight units of information by our measure. 

 

 Hartley overcame these problems by proposing that the measure of information for the 

occurrence of an event x be log(1/P(x)), where P(x) denotes the probability of occurrence of 

event x. Formally, 

 

 I(x) = log (1/P(x)) = –log P(x) (F.1) 

 



 F-10 

This measure "works" and leads to many useful results. The base of the logarithm is arbitrary but 

is invariably taken to the base 2, in which case the unit of measure is referred to as a bit. The 

appropriateness of this designation should be obvious as we proceed. Base 2 logarithms are 

assumed in the rest of this discussion. We can make the following observations: 

 

 1. A single bit that takes on the values 0 and 1 with equal probability conveys one bit of 

information (log(1/0.5) = 1). A string of two such bits takes on one of four equally likely 

outcomes with probability 0.25 and conveys two bits of information (log(1/0.25) = 2). 

Therefore, the second bit adds one bit of information. In a sequence of three independent 

bits, the third bit also adds one bit of information (log(1/0.125) = 3), and so on. 

 2. In the example of the PSK signal, a single signal element yields one bit of information for 

the amplitude and two for the phase, for a total of 3 bits, which agrees with the 

observation that there are eight possible outcomes. 

 

 Figure F.1 shows the information content for a single outcome as a function of the 

probability p of that outcome. As the outcome approaches certainty (p = 1), the information 

conveyed by its occurrence approaches zero. As the outcome approaches impossibility (p = 0), 

its information content approaches infinity. 

 

Entropy 

The other important concept in information theory is entropy, or uncertainty,2 which was 

proposed in 1948 by Shannon, the founder of information theory. Shannon defined the entropy H 

as the average amount of information obtained from the value of a random variable. Suppose we 

have a random variable X, which may take on the values x
1
, x

2
, …, x

N
, and that the 

corresponding probabilities of each outcome are P(x
1
), P(x

2
), …, P(x

N
). In a sequence of K 

occurrences of X, the outcome x
j
 will on average be selected KP(x

j
) times. Therefore, the average 

amount of information obtained from K outcomes is [using P
j
 as an abbreviation for P(x

j
)]: 

                                                

2  Shannon used the term entropy because the form of the function H is the same as the form of 

the entropy function in statistical thermodynamics. Shannon interchangeably called H the 

uncertainty function. 
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KP
1
 log(1/P

1
) + … + KP

N
 log(1/P

N
) 

 

 Dividing by K yields the average amount of information per outcome for the random 

variable, referred to as the entropy of X, and designated by H(X): 

 

 H X( ) = Pj log 1/ Pj( )
j =1

N

! = " Pj log Pj( )
j=1

N

!  (F.2) 

 

The function H is often expressed as an enumeration of the probabilities of the possible 

outcomes: H(P
1
, P

2
, …, P

N
).  

 As an example, consider a random variable X that takes on two possible values with 

respective probabilities p and 1 – p. The entropy associated with X is 

 

H(p, 1 – p) = –plog(p) – (1 – p)log(1 – p) 

 

Figure F.2 plots H(X) for this case as a function of p. Several important features of entropy are 

evident from this figure. First, if one of the two events is certain (p = 1 or p = 0), then the entropy 

is zero.3 One of the two events has to occur and no information is conveyed by its occurrence. 

Second, the maximum value of H(X) = 1 is reached when the two outcomes are equally likely. 

This seems reasonable: the uncertainty of the outcome is maximum when the two outcomes are 

equally likely. This result generalizes to a random variable with N outcomes: its entropy is 

maximum when the outcomes are equally likely: 

 

max H(P
1
, P

2
, …, P

N
) = H(1/N, 1/N, …, 1/N) 

 

For example: 

 

                                                

3  Strictly speaking, the formula for H(X) is undefined at p = 0. The value is assumed to be 0 for 

p = 0. This is justified because the limit of H(X) as p goes to 0 is 0. 
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 H(1/3, 1/3, 1/3) = 1/3 log 3 + 1/3 log 3 + 1/3 log 3 = 1.585 

 

whereas 

 

 H(1/2, 1/3, 1/6) = 1/2 log 2 + 1/3 log 3 + 1/6 log 6 =  

    0.5 + 0.528 + 0.43 = 1.458 

 

Properties of the Entropy Function 

We have developed the entropy formula H(X) by an intuitive line of reasoning. Another 

approach is to define the properties that an entropy function should have and then prove that the 

formula ! Pi logPi
i

"  is the only formula that has these properties. These properties, or axioms, 

can be stated as follows: 

 

 1. H is continuous over the range of probabilities. Thus, small changes in the probability of 

one of the occurrences only cause small changes in the uncertainty. This seems a 

reasonable requirement. 

 2. If there are N possible outcomes and they are equally likely, so that P
i
 = 1/N, then H(X) is 

a monotonically increasing function of N. This is also a reasonable property because it 

says that the more equally likely outcomes, the larger the uncertainty. 

 3. If some of the outcomes of X are grouped, then H can be expressed as a weighted sum of 

entropies in the following fashion: 

 

  

H P1,P2 ,P3 ,…,PN( ) = H P1 + P2 ,P3 ,…,PN( ) + P1 + P2( )H
P1

P1 + P2
,

P2

P1 + P2

! 

" 
# # 

$ 

% 
& &  

 

   The reasoning is as follows. Before the outcome is known, the average uncertainty 

associated with the outcome is H(P
1
, P

2
, P

3
, …, P

N
). If we reveal which outcome has 

occurred, except that the first two outcomes are grouped together, then the average 

amount of uncertainty removed is H(P
1
 + P

2
, P

3
, …, P

N
). With probability (P

1
 + P

2
), one 
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of the first two outcomes occurs and the remaining uncertainty is H[P
1
/(P

1
 + P

2
) + P

2
/(P

1
 

+ P
2
)]. 

 

 The only definition of H(X) that satisfies all three properties is the one that we have given. 

To see property (1), consider Figure F.2, which is clearly continuous in p. It is more difficult to 

depict H(X) when there are more than two possible outcomes, but the fact of continuity should be 

clear. 

 For property (2), if there are N equally likely outcomes, then H(X) becomes 

 

H X( ) = !
1

N
log

1

N

" 

# 
$ 

% 

& 
' 

j=1

N

( = ! log
1

N

" 

# 
$ 

% 

& 
' = log N( )  

 

The function log(N) is a monotonically increasing function of N. Note that with four possible 

outcomes, the entropy is 2 bits; with eight possible outcomes, the entropy is 3 bits, and so on. 

 As a numerical example of property (3), we may write 

 

H
1

2
,
1

3
,
1

6

! 

" 
# 

$ 

% 
& = H

5

6
,
1

6

! 

" 
# 

$ 

% 
& +

5

6
H
3

5
,
2

5

! 

" 
# 

$ 

% 
& 

1.458 = 0.219 + 0.43+
5

6
0.442 + 0.5288( )

= 0.649 + 0.809

 

 

Conditional Entropy 

Shannon defines the conditional entropy of Y given X, expressed as H(Y | X), as the uncertainty 

about Y given knowledge of X. This conditional entropy is defined as follows: 

 

! 

H Y | X( ) = " Pr x,y( ) log Pr(y | x)
x,y

#  

where 

 x = a value contained in the set X 



 F-14 

 y = a value contained in the set Y 

 Pr(x, y) = probability of the joint occurrence of x for the value in X and y for the value in 

Y 

 

 Conditional uncertainties obey intuitively pleasing rules, such as: 

 

H(X, Y) = H(X) + H(Y | X) 

 

F.3  ENTROPY AND SECRECY 

 

For a symmetric encryption system, the basic equations are C = E(K, M) and M = E(K, C). These 

equations can be written equivalently, in terms of uncertainties as 

 

H(C | K, M) = 0 

and 

 

 H(M | K, C) = 0 (F.3) 

 

respectively, because, for instance H(C | K, M) is zero if and only if, M and K uniquely determine 

C, which is a basic requirement of symmetric encryption. 

 Shannon's definition of perfect secrecy can then be written as: 

 

 H(M | C) = H(M) (F.4) 

 

because this equality holds if and only if M is statistically independent of C. 

 For any secret key cryptosystem, we can write; 

 

 H(M | C) " H(M, K | C)  

  = H(K | C) + H(M | K, C) 

  = H(K | C) 
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  " H(K) (F.5) 

 

where we have used Equation (F.3) and the fact that removal of given knowledge can only 

increase uncertainty. If the cryptosystem provides perfect secrecy, it follows from Equations 

(F.4) and (F.5) that 

 

 H(K) ! H(M) (F.6) 

 

 Inequality (F.6) is Shannon's fundamental bound for perfect secrecy. The uncertainty of the 

secret key must be at least as great as the uncertainty of the plaintext that it is concealing. Let us 

assume we are dealing with binary values; that is, the plaintext, key, and ciphertext are 

represented as binary strings. Then we can say that for a key of length k bits, 

 

 H(K) " –log(2–k) = k (F.7) 

 

with equality if and only if the key is completely random. Similarly, if the length of the plaintext 

is q, then 

 

 H(M) " –log(2–q) = q (F.8) 

 

with equality if and only if the plaintext is completely random, which means each q-bit plaintext 

is equally likely to occur. Combining inequalities (F.6, F.7, F.8), the requirement for perfect 

secrecy if the plaintext is completely random is k ! q. That is, the key must be at least as long as 

the plaintext. For the one-time pad, we have k = q. 
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