

AA P P E N D I X P P E N D I X GG

SS I M P L I F I E D I M P L I F I E D D E SD E S

William Stallings

Copyright 2010

G.1 OVERVIEW ..2!

G.2 S-DES KEY GENERATION ..3!

G.3 S-DES ENCRYPTION ..4!

Initial and Final Permutations..4!

The Function fK ...5!

The Switch Function ..7!

G.4 ANALYSIS OF SIMPLIFIED DES ..7!

G.5 RELATIONSHIP TO DES ..8!

 Supplement to

 Cryptography and Network Security, Fifth Edition

 William Stallings

 Prentice Hall 2010

 ISBN-10: 0136097049

 http://williamstallings.com/Crypto/Crypto5e.html

G-2

Simplified DES, developed by Professor Edward Schaefer of Santa Clara University [SCHA96],

is an educational rather than a secure encryption algorithm. It has similar properties and structure

to DES with much smaller parameters. The reader might find it useful to work through an

example by hand while following the discussion in this Appendix.

G.1 OVERVIEW

Figure G.1 illustrates the overall structure of the simplified DES, which we will refer to as S-

DES. The S-DES encryption algorithm takes an 8-bit block of plaintext (example: 10111101)

and a 10-bit key as input and produces an 8-bit block of ciphertext as output. The S-DES

decryption algorithm takes an 8-bit block of ciphertext and the same 10-bit key used to produce

that ciphertext as input and produces the original 8-bit block of plaintext.

 The encryption algorithm involves five functions: an initial permutation (IP); a complex

function labeled f
K

, which involves both permutation and substitution operations and depends on

a key input; a simple permutation function that switches (SW) the two halves of the data; the

function f
K

 again; and finally a permutation function that is the inverse of the initial permutation

(IP–1). As was mentioned in Chapter 2, the use of multiple stages of permutation and substitution

results in a more complex algorithm, which increases the difficulty of cryptanalysis.

 The function f
K

 takes as input not only the data passing through the encryption algorithm,

but also an 8-bit key. The algorithm could have been designed to work with a 16-bit key,

consisting of two 8-bit subkeys, one used for each occurrence of f
K

. Alternatively, a single 8-bit

key could have been used, with the same key used twice in the algorithm. A compromise is to

use a 10-bit key from which two 8-bit subkeys are generated, as depicted in Figure G.1. In this

case, the key is first subjected to a permutation (P10). Then a shift operation is performed. The

output of the shift operation then passes through a permutation function that produces an 8-bit

output (P8) for the first subkey (K
1
). The output of the shift operation also feeds into another

shift and another instance of P8 to produce the second subkey (K
2
).

G-3

 We can concisely express the encryption algorithm as a composition1 of functions:

IP
-1
! f

K2
!SW ! f

K1
! IP

which can also be written as:

!

ciphertext = IP-1 f
K2

SW f
K1

IP plaintext()()()()()

where

K1 = P8 Shift P10 key()()()

K2 = P8 Shift Shift P10 key()()()()

 Decryption is also shown in Figure G.1 and is essentially the reverse of encryption:

!

plaintext = IP-1 f
K1

SW f
K2

IP ciphertext()()()()()

 We now examine the elements of S-DES in more detail.

G.2 S-DES KEY GENERATION

S-DES depends on the use of a 10-bit key shared between sender and receiver. From this key,

two 8-bit subkeys are produced for use in particular stages of the encryption and decryption

algorithm. Figure G.2 depicts the stages followed to produce the subkeys.

 First, permute the key in the following fashion. Let the 10-bit key be designated as (k
1
, k

2
,

k
3
, k

4
, k

5
, k

6
, k

7
, k

8
, k

9
, k

10
). Then the permutation P10 is defined as:

P10(k
1
, k

2
, k

3
, k

4
, k

5
, k

6
, k

7
, k

8
, k

9
, k

10
) = (k

3
, k

5
, k

2
, k

7
, k

4
, k

10
, k

1
, k

9
, k

8
, k

6
)

1 Definition: If f and g are two functions, then the function F with the equation y = F(x) =

g[f(x)] is called the composition of f and g and is denoted as

F = g ! f .

G-4

P10 can be concisely defined by the display:

P10

3 5 2 7 4 10 1 9 8 6

 This table is read from left to right; each position in the table gives the identity of the input

bit that produces the output bit in that position. So the first output bit is bit 3 of the input; the

second output bit is bit 5 of the input, and so on. For example, the key (1010000010) is permuted

to (1000001100). Next, perform a circular left shift (LS-1), or rotation, separately on the first

five bits and the second five bits. In our example, the result is (00001 11000).

 Next we apply P8, which picks out and permutes 8 of the 10 bits according to the following

rule:

P8

6 3 7 4 8 5 10 9

The result is subkey 1 (K
1
). In our example, this yields (10100100)

 We then go back to the pair of 5-bit strings produced by the two LS-1 functions and

perform a circular left shift of 2 bit positions on each string. In our example, the value (00001

11000) becomes (00100 00011). Finally, P8 is applied again to produce K
2
. In our example, the

result is (01000011).

G.3 S-DES ENCRYPTION

Figure G.3 shows the S-DES encryption algorithm in greater detail. As was mentioned,

encryption involves the sequential application of five functions. We examine each of these.

Initial and Final Permutations

G-5

The input to the algorithm is an 8-bit block of plaintext, which we first permute using the IP

function:

IP

2 6 3 1 4 8 5 7

This retains all 8 bits of the plaintext but mixes them up. At the end of the algorithm, the inverse

permutation is used:

IP–1

4 1 3 5 7 2 8 6

 It is easy to show by example that the second permutation is indeed the reverse of the first;

that is, IP–1(IP(X)) = X.

The Function f
K

The most complex component of S-DES is the function f
K

, which consists of a combination of

permutation and substitution functions. The functions can be expressed as follows. Let L and R

be the leftmost 4 bits and rightmost 4 bits of the 8-bit input to f
K

, and let F be a mapping (not

necessarily one to one) from 4-bit strings to 4-bit strings. Then we let

f
K

(L, R) = (L ! F(R, SK), R)

where SK is a subkey and ! is the bit-by-bit exclusive-OR function. For example, suppose the

output of the IP stage in Figure G.3 is (10111101) and F(1101, SK) = (1110) for some key SK.

Then f
K

(10111101) = (01011101) because (1011) ! (1110) = (0101).

 We now describe the mapping F. The input is a 4-bit number (n
1
n

2
n

3
n

4
). The first operation

is an expansion/permutation operation:

G-6

E/P

4 1 2 3 2 3 4 1

For what follows, it is clearer to depict the result in this fashion:

n
4
 n

1
 n

2
 n

3

n
2
 n

3
 n

4
 n

1

The 8-bit subkey K
1
 = (k

11
, k

12
, k

13
, k

14
, k

15
, k

16
, k

17
, k

18
) is added to this value using exclusive-

OR:

n
4
 ! k

11
 n

1
 ! k

12
 n

2
 ! k

13
 n

3
 ! k

14

n
2
 ! k

15
 n

3
 ! k

16
 n

4
 ! k

17
 n

1
 ! k

18

 Let us rename these 8 bits:

p
0,0

 p
0,1

 p
0,2

 p
0,3

p
1,0

 p
1,1

 p
1,2

 p
1,3

 The first 4 bits (first row of the preceding matrix) are fed into the S-box S0 to produce a 2-

bit output, and the remaining 4 bits (second row) are fed into S1 to produce another 2-bit output.

These two boxes are defined as follows:

!

S0 =

0 1 2 3

0

1

2

3

1 0 3 2

3 2 1 0

0 2 1 3

3 1 3 2

"

$
$
$

%

&

'
'
'

S1=

0 1 2 3

0

1

2

3

0 1 2 3

2 0 1 3

3 0 1 0

2 1 0 3

"

$
$
$

%

&

'
'
'

G-7

 The S-boxes operate as follows. The first and fourth input bits are treated as a 2-bit number

that specify a row of the S-box, and the second and third input bits specify a column of the S-

box. The entry in that row and column, in base 2, is the 2-bit output. For example, if (p
0,0

p
0,3

) =

(00) and (p
0,1

p
0,2

) = (10), then the output is from row 0, column 2 of S0, which is 3, or (11) in

binary. Similarly, (p
1,0

p
1,3

) and (p
1,1

p
1,2

) are used to index into a row and column of S1 to

produce an additional 2 bits.

 Next, the 4 bits produced by S0 and S1 undergo a further permutation as follows:

P4

2 4 3 1

 The output of P4 is the output of the function F.

The Switch Function

The function f
K

 only alters the leftmost 4 bits of the input. The switch function (SW)

interchanges the left and right 4 bits so that the second instance of f
K

 operates on a different 4

bits. In this second instance, the E/P, S0, S1, and P4 functions are the same. The key input is K
2
.

G.4 ANALYSIS OF SIMPLIFIED DES

A brute-force attack on simplified DES is certainly feasible. With a 10-bit key, there are only 210

= 1024 possibilities. Given a ciphertext, an attacker can try each possibility and analyze the

result to determine if it is reasonable plaintext.

 What about cryptanalysis? Let us consider a known plaintext attack in which a single

plaintext (p
1
, p

2
, p

3
, p

4
, p

5
, p

6
, p

7
, p

8
) and its ciphertext output (c

1
, c

2
, c

3
, c

4
, c

5
, c

6
, c

7
, c

8
) are

known and the key (k
1
, k

2
, k

3
, k

4
, k

5
, k

6
, k

7
, k

8
, k

9
, k

10
) is unknown. Then each c

i
 is a polynomial

function g
i
 of the p

j
's and k

j
's. We can therefore express the encryption algorithm as 8 nonlinear

equations in 10 unknowns. There are a number of possible solutions, but each of these could be

calculated and then analyzed. Each of the permutations and additions in the algorithm is a linear

G-8

mapping. The nonlinearity comes from the S-boxes. It is useful to write down the equations for

these boxes. For clarity, rename (p
0,0

, p
0,1

,p
0,2

, p
0,3

) = (a, b, c, d) and (p
1,0,

 p
1,1

,p
1,2

, p
1,3

) = (w, x,

y, z), and let the 4-bit output be (q, r, s, t) Then the operation of the S0 is defined by the

following equations:

 q = abcd + ab + ac + b + d

 r = abcd + abd + ab + ac + ad + a + c + 1

where all additions are modulo 2. Similar equations define S1. Alternating linear maps with these

nonlinear maps results in very complex polynomial expressions for the ciphertext bits, making

cryptanalysis difficult. To visualize the scale of the problem, note that a polynomial equation in

10 unknowns in binary arithmetic can have 210 possible terms. On average, we might therefore

expect each of the 8 equations to have 29 terms. The interested reader might try to find these

equations with a symbolic processor. Either the reader or the software will give up before much

progress is made.

G.5 RELATIONSHIP TO DES

DES operates on 64-bit blocks of input. The encryption scheme can be defined as:

IP
-1
! f

K16
!SW ! f

K15
! SW !"! SW ! f

K1
! IP

A 56-bit key is used, from which sixteen 48-bit subkeys are calculated. There is an initial

permutation of 64 bits followed by a sequence of shifts and permutations of 48 bits.

 Within the encryption algorithm, instead of F acting on 4 bits (n
1
n

2
n

3
n

4
), it acts on 32 bits

(n
1
…n

32
). After the initial expansion/permutation, the output of 48 bits can be diagrammed as:

n
32

 n
1
 n

2
 n

3
 n

4
 n

5

n
4
 n

5
 n

6
 n

7
 n

8
 n

9

G-9

•

•

•

 •

•

•

 •

•

•

n
28

 n
29

 n
30

 n
31

 n
32

 n
1

 This matrix is added (exclusive-OR) to a 48-bit subkey. There are 8 rows, corresponding to

8 S-boxes. Each S-box has 4 rows and 16 columns. The first and last bit of a row of the

preceding matrix picks out a row of an S-box, and the middle 4 bits pick out a column.

!"#

"#$%&'()*+

,$%&'(-./&0'*1'

23456!7893 :2456!7893

,$%&'(;&-<*='*1' ,$%&'(;&-<*='*1'

>&?@=*(AB"((((C&D-.&E&*F(:2C(C;<*D*

,$%&'(-./&0'*1'

C<&E'

!,

C<&E'

!,

E!
!"

!G !G

!"

CH

8!I"

8!

E!

E!

CH

8!

8!$"

E!

!"#

"#$%&'()*+

!,

!"

!,

-.$" -.$"

-.$/ -.$/

!/

0

"#

0

0

,

,

0

0 0

1&234*(56/(((7*+(5*8*49'&:8(;:4(.&<=>&;&*?(@A.

!"

#$%&'()*+&,'-.'

#$%&'(/&)0-1'-.'

2&341-(567(((8&9)*&:&-;(<=8(=,/1>)'&?,(<-'+&*

!"@A

=B"

"C

8D

!A

8A

E

E

:
!

2

8F

#

#

#

#

C

C

G G

C

C

C

C

C

=B"

"C

8D

!G

8A

E

E

:
!

2
#

#

C

C

G G

C

C

C

