

A number of algorithms have been proposed for public-key cryptography. Some of these, though initially promising, turned out to be breakable. It is instructive to review the most important such scheme.

J. 1 THE KNAPSACK PROBLEM

The most famous of the fallen contenders is the trapdoor knapsack proposed by Ralph Merkle [MERK78]. The knapsack problem deals with determining which objects are in a container, such as a knapsack. A simple example is shown if Figure J.1. The knapsack is filled with a subset of the items shown, whose weights in grams are indicated. Given the weight of the filled knapsack, 1156 grams, the problem is to determine which of the items are contained in the knapsack. (The scale is calibrated to deduct the weight of the empty knapsack.) As an exercise, the reader is encouraged to determine the contents of the knapsack by trail-and-error calculation.

The problem illustrated in Figure J. 1 is relatively simple but generally becomes computationally formidable when there are, say, 100 items rather than the 10 of this example. Merkle's contribution was to show (1) how to turn the knapsack problem into a scheme for encryption and decryption, and (2) how to incorporate trapdoor information that would enable a person to quickly solve the knapsack problem.

J. 2 THE KNAPSACK CRYPTOSYSTEM

First, let us state the general approach for encryption/decryption using the knapsack problem. Suppose we wish to send messages in blocks of n bits. Then, define:

$$
\begin{aligned}
& \text { cargo vector } \mathbf{a}=\left(a_{1}, a_{2}, \ldots, a_{n}\right) \\
& a_{i} \text { integer } \\
& \text { plaintext message block } \mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \\
& x_{i} \text { binary } \\
& \text { corresponding ciphertext } S=\mathbf{a} \bullet \mathbf{x}=\sum_{i=1}^{n}\left(a_{i} \times x_{i}\right)
\end{aligned}
$$

Consider the cargo vector a to be a list of potential elements to be put in the knapsack, with each vector element in a equal to the weight of the corresponding cargo element. And consider the plaintext message block \mathbf{x} to be a selection of elements from the cargo vector, with $x_{i}=1$ for each cargo element a_{i} that is selected for inclusion in the knapsack. Thus each unique plaintext message block corresponds to a unique selection of items from the cargo vector. The vector product S is simply the sum of the selected items, which is the weight of the knapsack.

For encryption, \mathbf{a} is the public key. If Bob wishes to send a confidential message \mathbf{x} to Alice, Bob encrypts the message using Alice's public key a. Bob performs $S=\mathbf{a} \cdot \mathbf{x}$ and transmits S. For decryption, the Alice must recover \mathbf{x}, given S and \mathbf{a}.

This public-key scheme must satisfy two requirements. The first requirement is that there be a unique inverse for each value of S. For example, consider the following:

$$
\begin{aligned}
& \mathbf{a}=(1,3,2,5) \\
& S=3
\end{aligned}
$$

This problem has two solutions: $\mathbf{x}=1010$ and $\mathbf{x}=0100$. Thus, the elements of \mathbf{a} must be chosen such that each combination of elements yields a unique value.

The second requirement is that decryption is hard in general but easy if special knowledge is available. (In the preceding example, the special knowledge would function as Alice's private key.) Certainly, for large values of n, the knapsack problem is hard in general. But, under special circumstances, the problem is easy to solve. Suppose we impose the condition that each element of \mathbf{a} is larger than the sum of the preceding elements:

$$
\begin{equation*}
a_{i}>\sum_{j=1}^{i-1} a_{j} \quad 1<i \leq n \tag{J.1}
\end{equation*}
$$

This is known as a superincreasing vector. In this case, the solution is easy. For example, consider the vector

$$
\mathbf{a}^{\prime}=(171,197,459,1191,2410)
$$

which satisfies inequality (J.1). Suppose we have $S^{\prime}=\mathbf{a}^{\prime} \bullet \mathbf{x}^{\prime}=3798$. Because $3798>2410, a_{5}$ must be included ($x_{5}=1$), because without a_{5} the other elements cannot contribute enough to add up to 3798 . Now consider $3798-2410=1388$. Because $1388>1191, a_{4}$ must also be included $\left(x_{4}=1\right)$. Continuing in this fashion, we find that $x_{3}=0, x_{2}=1$, and $x_{1}=0$. Thus, in this example, given the public key \mathbf{a}^{\prime} and the encrypted message S^{\prime}, it is possible to decrypt the message without access to a private key.

What Merkle did was find a way to tie an easy superincreasing knapsack problem to a difficult general knapsack problem. Suppose we choose at random an easy superincreasing knapsack vector $\mathbf{a}^{\prime}=\left(a_{1}^{\prime}, a_{2}^{\prime}, \ldots a_{n}^{\prime}\right)$, with n elements. Also select two integers m and w, such that m is greater than the sum of the elements of \mathbf{a}^{\prime} and w is relatively prime to m. That is:

$$
\begin{gathered}
m>\sum_{l=1}^{n} a_{i}^{\prime} \\
\operatorname{gcd}(w, m)=1
\end{gathered}
$$

Now, we construct a hard knapsack vector a by multiplying the easy vector \mathbf{a}^{\prime} by w, modulo m :

$$
\mathbf{a}=w \mathbf{a}^{\prime} \bmod m
$$

The vector a will, in general, not be superincreasing and can therefore be used to construct hard knapsack problems. However, knowledge of w and m enables the conversions of this hard knapsack problem to an easy one. To see this, first observe that because w and m are relatively prime, there exists a unique multiplicative inverse w^{-1}, modulo m. Therefore,

$$
w^{-1} \mathbf{a} \equiv \mathbf{a}^{\prime}(\bmod m)
$$

We are now ready to define the knapsack scheme. The ingredients are the following:

\mathbf{a}^{\prime}, a superincreasing vector	(private, chosen)
m, an integer larger than $\sum_{1=1}^{n} a_{i}^{\prime}$	(private, chosen)
w, an integer relatively prime to m	(private, chosen)
w^{-1}, the inverse of w, modulo m	(private, calculated)
\mathbf{a}, equal to $w \mathbf{a}^{\prime} \bmod m$	(public, calculated)

The private key consists of the triple ($w^{-1}, m, \mathbf{a}^{\prime}$). The public key is a. Suppose that Alice has published her public key \mathbf{a} and that Bob wishes to send the message \mathbf{x} to Alice. Bob calculates the sum:

$$
S=\mathbf{a} \cdot \mathbf{x}
$$

The determination of \mathbf{x} given S and \mathbf{a} is difficult, so this is a secure transmission. On receipt, Alice is able to decrypt easily. Define $S^{\prime}=w^{-1} S \bmod m$. We have:

$$
\begin{aligned}
& S=\mathbf{a} \cdot \mathbf{x}=w \mathbf{a}^{\prime} \cdot \mathbf{x} \\
& S^{\prime}=w^{-1} S \bmod m \\
& S^{\prime}=w^{-1} w \mathbf{a}^{\prime} \cdot \mathbf{x} \bmod m \\
& S^{\prime}=\mathbf{a}^{\prime} \cdot \mathbf{x}
\end{aligned}
$$

Therefore, we have converted the hard problem of finding \mathbf{x} given S and \mathbf{a} to the easy problem of finding \mathbf{x} given S^{\prime} and \mathbf{a}^{\prime}.

The knapsack algorithm was hailed as an unbreakable system. Merkle, confident though not rich, offered a reward of $\$ 100$ to anyone who could break it. It took four years, but Adi Shamir, one of the inventors of RSA, broke the system and collected the $\$ 100$ [SHAM82].

But Merkle was not through. He observed that the hard knapsack problem could be made even harder by using multiple transformations $\left(w_{1}, m_{1}\right),\left(w_{2}, m_{2}\right)$, and so on. The overall transformation that results is not equivalent to any single (w, m) transformation. With this in mind, Merkle upped the ante to $\$ 1000$ for anyone who could break the multiple-iteration
problem. This time he had only two years to wait before having to pay up [ADLE83]. This ended serious consideration of knapsacks as a basis for public-key cryptography.

J. 3 EXAMPLE

Figure J. 2 shows an example. Alice creates a private key by first generating a superincreasing vector $\mathbf{a}^{\prime}=(1,3,7,13,26,65,119,267)$. Then, Alice selects an integer greater than $\sum a_{i}=501$; the prime $m=523$ is selected. The advantage of choosing a prime number for m is that all positive integers less than m are relatively prime to m. Alice chooses $w=467$. Alice then computes the inverse of w modulo 523 , which is $w^{-1}=28$; that is, $(467 \times 28) \bmod 523=1$. To complete the public key, Alice calculates $\mathbf{a}=w \mathbf{a}^{\prime} \bmod m=(467,355,131,318,113,21,135$, 215).

Bob now has Alice's public can and can encrypt messages to Alice. Given the plaintext message $\mathbf{x}=01001011$, Bob computes $S=\mathbf{a} \cdot \mathbf{x}=818$. To decrypt the ciphertext, Alice first computes $S^{\prime}=w^{-1} S \bmod m=(28 \times 818) \bmod 523=415$, and then solves the easy knapsack problem to recover 01001011.

Figure J. 1 Illustration of the Knapsack Problem

Key Generation

easy knapsack a'

1	3	7	13	26	65	119	267

modulus $m=523 \quad$ multiplier $w=467 \quad w^{-1}=28$
$(1 \times 467) \bmod 523=467$
$(3 \times 467) \bmod 523=355$
$(7 \times 467) \bmod 523=131$
$(13 \times 467) \bmod 523=318$
$(26 \times 467) \bmod 523=113$
$(65 \times 467) \bmod 523=21$
$(119 \times 467) \bmod 523=135$
$(267 \times 467) \bmod 523=215$
hard knapsack a

467	355	131	318	113	21	135	215

public key $P U_{A}=\mathbf{a} \quad$ private key $P R_{A}=\left(w^{-1}, m, \mathbf{a}^{\prime}\right)$

Encryption

Plaintext $=01001011$
$\begin{aligned} \text { Ciphertext }= & (0 \times 467)+(1 \times 355)+(0 \times 131)+(0 \times 318)+ \\ & (1 \times 113)+(0 \times 21)+(1 \times 135)+(1 \times 215) \\ = & 818\end{aligned}$

Decryption

$\left(818 \times w^{-1}\right) \bmod m=(28 \times 818) \bmod 523=415$
$415 \geq 267 \quad \Rightarrow \quad a_{8}=1$
$415-267=148 \geq 119 \Rightarrow a_{7}=1$
$148-119=29<65 \quad \Rightarrow \quad a_{6}=0$
$29 \geq 26 \quad \Rightarrow \quad a_{5}=1$
$29-26=3<13 \quad \Rightarrow \quad a_{4}=0$
$3<7 \quad \Rightarrow \quad a_{3}=0$
$3 \geq 3 \quad \Rightarrow \quad a_{2}=1$
$3-3=0<1 \quad \Rightarrow \quad a_{1}=0$
Plaintext $=a_{8} a_{7} a_{6} a_{5} a_{4} a_{3} a_{2} a_{1}=01001011$
Figure J. 2 Knapsack Example

