

AA P P E N D I X P P E N D I X JJ

KK N A P S A C K N A P S A C K PP U B L I CU B L I C -- KK E Y E Y AA L G O R I T H ML G O R I T H M

William Stallings

Copyright 2010

J.1 THE KNAPSACK PROBLEM...Error! Bookmark not defined.

 Supplement to
 Cryptography and Network Security, Fifth Edition

 William Stallings
 Prentice Hall 2010
 ISBN-10: 0136097049
 http://williamstallings.com/Crypto/Crypto5e.html

 J-2

A number of algorithms have been proposed for public-key cryptography. Some of these, though

initially promising, turned out to be breakable. It is instructive to review the most important such

scheme.

J.1 THE KNAPSACK PROBLEM

The most famous of the fallen contenders is the trapdoor knapsack proposed by Ralph Merkle

[MERK78]. The knapsack problem deals with determining which objects are in a container, such

as a knapsack. A simple example is shown if Figure J.1. The knapsack is filled with a subset of

the items shown, whose weights in grams are indicated. Given the weight of the filled knapsack,

1156 grams, the problem is to determine which of the items are contained in the knapsack. (The

scale is calibrated to deduct the weight of the empty knapsack.) As an exercise, the reader is

encouraged to determine the contents of the knapsack by trail-and-error calculation.

 The problem illustrated in Figure J.1 is relatively simple but generally becomes

computationally formidable when there are, say, 100 items rather than the 10 of this example.

Merkle's contribution was to show (1) how to turn the knapsack problem into a scheme for

encryption and decryption, and (2) how to incorporate trapdoor information that would enable a

person to quickly solve the knapsack problem.

J.2 THE KNAPSACK CRYPTOSYSTEM

First, let us state the general approach for encryption/decryption using the knapsack problem.

Suppose we wish to send messages in blocks of n bits. Then, define:

 cargo vector a = (a1, a2, …, a
n
) a

i
 integer

 plaintext message block x = (x1, x2, …, x
n
) x

i
 binary

 corresponding ciphertext

!

S = a • x = a
i
" x

i()
i=1

n

 J-3

 Consider the cargo vector a to be a list of potential elements to be put in the knapsack, with

each vector element in a equal to the weight of the corresponding cargo element. And consider

the plaintext message block x to be a selection of elements from the cargo vector, with x
i
 = 1 for

each cargo element a
i
 that is selected for inclusion in the knapsack. Thus each unique plaintext

message block corresponds to a unique selection of items from the cargo vector. The vector

product S is simply the sum of the selected items, which is the weight of the knapsack.

 For encryption, a is the public key. If Bob wishes to send a confidential message x to Alice,

Bob encrypts the message using Alice's public key a. Bob performs S = a • x and transmits S. For

decryption, the Alice must recover x, given S and a.

 This public-key scheme must satisfy two requirements. The first requirement is that there

be a unique inverse for each value of S. For example, consider the following:

 a = (1, 3, 2, 5)

 S = 3

This problem has two solutions: x = 1010 and x = 0100. Thus, the elements of a must be chosen

such that each combination of elements yields a unique value.

 The second requirement is that decryption is hard in general but easy if special knowledge

is available. (In the preceding example, the special knowledge would function as Alice's private

key.) Certainly, for large values of n, the knapsack problem is hard in general. But, under special

circumstances, the problem is easy to solve. Suppose we impose the condition that each element

of a is larger than the sum of the preceding elements:

!

ai > a j
j=1

i"1

1< i $ n (J.1)

This is known as a superincreasing vector. In this case, the solution is easy. For example,

consider the vector

a' = (171, 197, 459, 1191, 2410)

 J-4

which satisfies inequality (J.1). Suppose we have S' = a' • x' = 3798. Because 3798 > 2410, a5

must be included (x5 = 1), because without a5 the other elements cannot contribute enough to add

up to 3798. Now consider 3798 – 2410 = 1388. Because 1388 > 1191, a4 must also be included

(x4 = 1). Continuing in this fashion, we find that x3 = 0, x2 = 1, and x1 = 0. Thus, in this example,

given the public key a' and the encrypted message S', it is possible to decrypt the message

without access to a private key.

 What Merkle did was find a way to tie an easy superincreasing knapsack problem to a

difficult general knapsack problem. Suppose we choose at random an easy superincreasing

knapsack vector

!

" a = " a 1, " a 2 ,… " a
n(), with n elements. Also select two integers m and w, such

that m is greater than the sum of the elements of a' and w is relatively prime to m. That is:

!

m > " a
i

1=1

n

gcd(w, m) = 1

Now, we construct a hard knapsack vector a by multiplying the easy vector a' by w, modulo m:

a = wa' mod m

 The vector a will, in general, not be superincreasing and can therefore be used to construct

hard knapsack problems. However, knowledge of w and m enables the conversions of this hard

knapsack problem to an easy one. To see this, first observe that because w and m are relatively

prime, there exists a unique multiplicative inverse w–1, modulo m. Therefore,

w–1a ! a' (mod m)

 We are now ready to define the knapsack scheme. The ingredients are the following:

 J-5

 a', a superincreasing vector (private, chosen)

 m, an integer larger than

!

" a
i

1=1

n

(private, chosen)

 w, an integer relatively prime to m (private, chosen)

 w–1, the inverse of w, modulo m (private, calculated)

 a, equal to wa'mod m (public, calculated)

 The private key consists of the triple (w–1, m, a'). The public key is a. Suppose that Alice

has published her public key a and that Bob wishes to send the message x to Alice. Bob

calculates the sum:

S = a • x

 The determination of x given S and a is difficult, so this is a secure transmission. On

receipt, Alice is able to decrypt easily. Define S' = w–1S mod m. We have:

 S = a • x = wa' • x

 S' = w–1S mod m

 S' = w–1wa' • x mod m

 S' = a' • x

 Therefore, we have converted the hard problem of finding x given S and a to the easy

problem of finding x given S' and a'.

 The knapsack algorithm was hailed as an unbreakable system. Merkle, confident though

not rich, offered a reward of $100 to anyone who could break it. It took four years, but Adi

Shamir, one of the inventors of RSA, broke the system and collected the $100 [SHAM82].

 But Merkle was not through. He observed that the hard knapsack problem could be made

even harder by using multiple transformations (w1, m1), (w2, m2), and so on. The overall

transformation that results is not equivalent to any single (w, m) transformation. With this in

mind, Merkle upped the ante to $1000 for anyone who could break the multiple-iteration

 J-6

problem. This time he had only two years to wait before having to pay up [ADLE83]. This

ended serious consideration of knapsacks as a basis for public-key cryptography.

J.3 EXAMPLE

Figure J.2 shows an example. Alice creates a private key by first generating a superincreasing

vector a' = (1, 3, 7, 13, 26, 65, 119, 267). Then, Alice selects an integer greater than

" a
i
 = 501; the prime m = 523 is selected. The advantage of choosing a prime number for m is

that all positive integers less than m are relatively prime to m. Alice chooses w = 467. Alice then

computes the inverse of w modulo 523, which is w–1 = 28; that is, (467 # 28) mod 523 = 1. To

complete the public key, Alice calculates a = wa' mod m = (467, 355, 131, 318, 113, 21, 135,

215).

 Bob now has Alice's public can and can encrypt messages to Alice. Given the plaintext

message x = 01001011, Bob computes S = a • x = 818. To decrypt the ciphertext, Alice first

computes S' = w–1S mod m = (28 # 818) mod 523 = 415, and then solves the easy knapsack

problem to recover 01001011.

!"" #$%

#&#"'()*

+,$- .!#

+,!,+"'#.+

/0*123(4&#((5661782980:;(:<(8=3(>;9?79@)(A2:B63C

#!

Key Generation

easy knapsack a' 1 3 7 13 26 65 119 267

modulus m = 523 multiplier w = 467 w–1 = 28

 (1 ! 467) mod 523 = 467

 (3 ! 467) mod 523 = 355

 (7 ! 467) mod 523 = 131

 (13 ! 467) mod 523 = 318

 (26 ! 467) mod 523 = 113

 (65 ! 467) mod 523 = 21

 (119 ! 467) mod 523 = 135

 (267 ! 467) mod 523 = 215

hard knapsack a 467 355 131 318 113 21 135 215

public key PU
A
 = a private key PR

A
 = (w–1, m, a')

Encryption

Plaintext = 01001011

Ciphertext = (0 ! 467) + (1 ! 355) + (0 ! 131) + (0 ! 318) +

 (1 ! 113) + (0 ! 21) + (1 ! 135) + (1 ! 215)

 = 818

Decryption

(818 ! w–1) mod m = (28 ! 818) mod 523 = 415

415 ! 267 " a
8
 = 1

415 – 267 = 148 ! 119 " a
7
 = 1

148 – 119 = 29 < 65 " a
6
 = 0

29 ! 26 " a
5
 = 1

29 – 26 = 3 < 13 " a
4
 = 0

3 < 7 " a
3
 = 0

3 ! 3 " a
2
 = 1

3 – 3 = 0 < 1 " a
1
 = 0

Plaintext = a
8
a

7
a

6
a

5
a

4
a

3
a

2
a

1
 = 01001011

Figure J.2 Knapsack Example

