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The purpose of this appendix is to provide a proof that in the DSA signature verification we have 

v = r if the signature is valid. The following proof is based on that which appears in the FIPS 

standard, but it includes additional details to make the derivation clearer. 

 

LEMMA 1. For any integer t, if g = h(p–1)/q mod p 

  then gt mod p = gt mod q mod p 

 

Proof: By Fermat's theorem (Chapter 8), because h is relatively prime to p, we have 

Hp–1 mod p = 1. Hence, for any nonnegative integer n, 

 

 gnq mod p = 
    

h p−1( ) q mod p 
 
  

 
 

nq
mod p  

  = h((p–1)/q)nq mod p by the rules of modular arithmetic 

  = h(p–1)n mod p 

  = 
    

h p−1( ) mod p 
 
  

 
 

n 

 
 

 

 
 mod p  by the rules of modular arithmetic 

  = 1n mod p  =  1 

 

 So, for nonnegative integers n and z, we have 

 

 gnq+z mod p = (gnq gz) mod p 

  = 
    

gnq mod p( ) gz mod p( )( )mod p  

  = gz mod p 

 

 Any nonnegative integer t can be represented uniquely as t = nq + z, where n and z are 

nonnegative integers and 0 < z < q. So z = t mod q. The result follows. QED. 

 

LEMMA 2. For nonnegative integers a and b:  g(a mod q + b mod q) mod p = g(a+b) mod q mod p 
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Proof: By Lemma 1, we have 

 

 g(a mod q + b mod q) mod p = g(a mod q + b mod q) mod q mod p 

  = g(a + b) mod q mod p 

QED. 

 

LEMMA 3. y(rw) mod q mod p  =  g(xrw) mod q mod p 

 

Proof: By definition (Figure 13.2), y = gx mod p. Then: 

 

 y(rw) mod q mod p = (gx mod p)(rw) mod q mod p 

  = gx ((rw) mod q) mod p by the rules of modular 

arithmetic 

  = g(x ((rw) mod q)) mod q mod p by Lemma 1 

  = g(xrw) mod q mod p 

QED. 

 

LEMMA 4. ((H(M) + xr)w) mod q = k 

 

Proof: By definition (Figure 13.2), 
    
s = k−1 H M( ) + xr( )( ) mod q . Also, because q is prime, any 

nonnegative integer less than q has a multiplicative inverse (Chapter 8). So (k k–1) mod q = 1. 

Then: 

 

    

ks( ) mod q = k k−1 H M( ) + xr( )( ) mod q( ) 
 

 
 

mod q

= k k−1 H M( ) + xr( )( )( ) 
 

 
 mod q

= kk −1( ) mod q( ) H M( ) + xr( ) mod q( ) 
 

 
 mod q

= H M( ) + xr( )( ) mod q
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 By definition, w = s–1 mod q and therefore (ws) mod q = 1. Therefore, 

 

 ((H(M) + xr)w) mod q = (((H(M) + xr) mod q) (w mod q)) mod q 

  = (((ks) mod q) (w mod q)) mod q 

  = (kws) mod q 

  = ((k mod q) ((ws) mod q)) mod q 

  = k mod q 

 

 Because 0 < k < q, we have k mod q = k.  QED. 

 

THEOREM: Using the definitions of Figure 13.2, v = r. 

 

 v = 
    

gu1yu2( )mod p( ) mod q  by definition 

  = 
    

g H M( )w( ) mod qy rw( ) mod q 
 
  

 
 mod p 

 
  

 
 mod q  

  = 
    

g H M( )w( ) mod qg xrw( ) mod q 
 
  

 
 mod p 

 
  

 
 mod q  by Lemma 3 

  = 
    

g H M( )w( ) mod q + xrw( ) mod q 
 
  

 
 mod p 

 
  

 
 mod q  

  = 
    

g H M( )w+xrw( ) mod q 
 
  

 
 mod p 

 
  

 
 mod q  by Lemma 2 

  = 
    

g H M( )+xr( )w( ) mod q 
 
 

 
 
 mod p

 

 
 

 

 
 mod q  

  =     gk mod p( ) mod q  by Lemma 4 

  = r by definition 

QED. 

 


