

AA P P E N D I X P P E N D I X NN

WW H I R L P O O LH I R L P O O L

William Stallings

Copyright 2010

N.1 WHIRLPOOL HASH STRUCTURE..3

Background ..3

Whirlpool Logic...4

N.2 BLOCK CIPHER W ..5

Overall Structure..7

The Nonlinear Layer SB ..10

The Permutation Layer SC...10

The Diffusion Layer MR ...11

The Add Key Layer AK...12

Key Expansion for the Block Cipher W ..13

REFERENCES ..13

 Supplement to

 Cryptography and Network Security, Fifth Edition

 William Stallings

 Prentice Hall 2010

 ISBN-10: 0136097049

 http://williamstallings.com/Crypto/Crypto5e.html

 N-2

In this appendix, we examine the hash function Whirlpool [BARR03], one of whose designers is

also co-inventor of Rijndael, adopted as the Advanced Encryption Standard (AES). Whirlpool is

one of only two hash functions endorsed by NESSIE (New European Schemes for Signatures,

Integrity, and Encryption).1 The NESSIE project is a European Union-sponsored effort to put

forward a portfolio of strong cryptographic primitives of various types.

 Whirlpool is based on the use of a block cipher for the compression function. There has

traditionally been little interest in the use of block-cipher-based hash functions because of the

demonstrated security vulnerabilities of the structure. The following are potential drawbacks:

 1. Block ciphers do not possess the properties of randomizing functions. For example, they

are invertible. This lack of randomness may lead to weaknesses that can be exploited.

 2. Block ciphers typically exhibit other regularities or weaknesses. For example, [MIYA90]

demonstrates how to compromise many hash schemes based on properties of the

underlying block cipher.

 3. Typically, block-cipher-based hash functions are significantly slower than hash functions

based on a compression function specifically designed for the hash function.

 4. A principal measure of the strength of a hash function is the length of the hash code in

bits. For block-cipher-based hash codes, proposed designs have a hash code length equal

to either the cipher block length or twice the cipher block length. Traditionally, cipher

block length has been limited to 64 bits (e.g., DES, triple DES), resulting in a hash code

of questionable strength.

 However, since the adoption of AES, there has been renewed interested in developing a

secure hash function based on a strong block cipher and exhibiting good performance. Whirlpool

is a block-cipher-based hash function intended to provide security and performance that is

comparable, if not better, than that found in non-block-cipher based hash functions, such as

SHA. Whirlpool has the following features:

1 The other endorsed scheme consists of three variants of SHA: SHA-256, SHA-384, and

SHA-512.

 N-3

 1. The hash code length is 512 bits, equaling the longest hash code available with SHA.

 2. The overall structure of the hash function is one that has been shown to be resistant to the

usual attacks on block-cipher-based hash codes.

 3. The underlying block cipher is based on AES and is designed to provide for

implementation in both software and hardware that is both compact and exhibits good

performance.

 The design of Whirlpool sets the following security goals: Assume we take as hash result

the value of any n-bit substring of the full Whirlpool output.

• The expected workload of generating a collision is of the order of 2n/2 executions of

Whirlpool.

• Given an n-bit value, the expected workload of finding a message that hashes to that value

is of the order of 2n executions of Whirlpool.

• Given a message and its n-bit hash result, the expected workload of finding a second

message that hashes to the same value is of the order of 2n executions of Whirlpool.

• It is infeasible to detect systematic correlations between any linear combination of input

bits and any linear combination of bits of the hash result, or to predict what bits of the hash

result will change value when certain input bits are flipped (this means resistance against

linear and differential attacks).

 The designers assert their confidence that these goals have been met with a considerable

safety margin. However, the goals are not susceptible to a formal proof.

 We begin with a discussion of the structure of the overall hash function, and then examine

the block cipher used as the basic building block.

N.1 WHIRLPOOL HASH STRUCTURE

Background

The general iterated hash structure proposed by Merkle (Figure 11.7) is used in virtually all

secure hash functions. However, as was pointed out, there are difficulties in designing a truly

 N-4

secure iterated hash function when the compression function is a block cipher. Preneel

[PREN93a, PREN93b] performed a systematic analysis of block-cipher-based hash functions,

using the model depicted in Figure N.1. In this model, the hash code length equals the cipher

block length. Additional security problems are introduced and the analysis is more difficult if the

hash code length exceeds the cipher block length. Preneel devised 64 possible permutations of

the basic model, based on which input served as the encryption key and which served as

plaintext and on what input, if any, was combined with the ciphertext to produce the intermediate

hash code. Based on his analysis, he concluded that only schemes in which the plaintext was fed

forward and combined with the ciphertext were secure. Such an arrangement makes the

compression function difficult to invert. [BLAC02] confirmed these results, but pointed out the

security problem of using an established block cipher such as AES: The 128-bit hash code value

resulting from the use of AES or another scheme with the same block size may be inadequate for

security.

Whirlpool Logic

Given a message consisting of a sequence of blocks m
1
, m

2
, …, m

t
, the Whirlpool hash function

is expressed as follows:

 H
0
 = initial value

 H
i
 = E(H

i–1
, m

i
) ! H

i–1
 ! m

i
 = intermediate value

 H
t
 = hash code value

 In terms of the model of Figure N.1, the encryption key input for each iteration is the

intermediate hash value from the previous iteration; the plaintext is the current message block;

and the feedforward value is the bitwise XOR of the current message block and the intermediate

hash value from the previous iteration.

 The algorithm takes as input a message with a maximum length of less than 2256 bits and

produces as output a 512-bit message digest. The input is processed in 512-bit blocks. Figure N.2

depicts the overall processing of a message to produce a digest. This follows the general

structure depicted in Figure 11.7. The processing consists of the following steps:

 N-5

• Step 1: Append padding bits. The message is padded so that its length in bits is an odd

multiple of 256. Padding is always added, even if the message is already of the desired

length. For example, if the message is 256 " 3 = 768 bits long, it is padded by 512 bits to a

length of 256 " 5 = 1280 bits. Thus, the number of padding bits is in the range of 1 to 512.

 The padding consists of a single 1-bit followed by the necessary number of 0-bits.

• Step 2: Append length. A block of 256 bits is appended to the message. This block is

treated as an unsigned 256-bit integer (most significant byte first) and contains the length in

bits of the original message (before the padding).

 The outcome of the first two steps yields a message that is an integer multiple of

512 bits in length. In Figure N.2, the expanded message is represented as the sequence of

512-bit blocks m
1
, m

2
, …, m

t
, so that the total length of the expanded message is t " 512

bits. These blocks are viewed externally as arrays of bytes by sequentially grouping the bits

in 8-bit chunks. However, internally, the hash state H
i
 is viewed as an 8 " 8 matrix of

bytes. The transformation between the two is explained subsequently.

• Step 3: Initialize hash matrix. An 8 " 8 matrix of bytes is used to hold intermediate and

final results of the hash function. The matrix is initialized as consisting of all 0-bits.

• Step 4: Process message in 512-bit (64-byte) blocks. The heart of the algorithm is the

block cipher W.

N.2 BLOCK CIPHER W

Unlike virtually all other proposals for a block-cipher-based hash function, Whirlpool uses a

block cipher that is specifically designed for use in the hash function and that is unlikely ever to

be used as a standalone encryption function. The reason for this is that the designers wanted to

make use of a block cipher with the security and efficiency of AES but with a hash length that

provided a potential security equal to SHA-512. The result is the block cipher W, which has a

similar structure and uses the same elementary functions as AES, but which uses a block size and

a key size of 512 bits. Table N.1 compares AES and W.

 N-6

Table N.1 Comparison of Whirlpool Block Cipher W and AES

 W AES

Block size (bits) 512 128

Key size (bits) 512 128, 192, or 256

Matrix

orientation

Input is mapped row-wise Input is mapped column-wise

Number of

rounds

10 10, 12, or 14

Key expansion W round function dedicated expansion algorithm

GF(28)

polynomial

x8 + x4 + x3 + x2 + 1 (011D) x8 + x4 + x3 + x + 1 (011B)

Origin of S-box recursive structure multiplicative inverse in

GF(28) plus affine

transformation

Origin of round

constants

Successive entries of the S-

box

elements 2i of GF(28)

Diffusion layer right multiplication by 8"8

circulant MDS matrix (1, 1, 4,

1, 8, 5, 2, 9) - mix rows

left multiplication by 4"4

circulant MDS matrix (2, 3, 1,

1) - mix columns

Permutation shift columns shift rows

 Although W is similar to AES, it is not simply an extension. Recall that the Rijndael

proposal for AES defined a cipher in which the block length and the key length can be

independently specified to be 128, 192, or 256 bits. The AES specification uses the same three

key size alternatives but limits the block length to 128 bits. AES operates on a state of 4"4 bytes.

Rijndael with block length 192 bits operates on a state of 4"6 bytes. Rijndael with block length

256 bits operates on a state of 4"8 bytes. W operates on a state of 8"8 bytes. The more the state

representation differs from a square, the slower the diffusion goes and the more rounds the cipher

needs. For a block length of 512 bits, the Whirlpool developers could have defined a Rijndael

 N-7

operating on a state of 4"16 bytes, but that cipher would have needed many rounds and it would

have been very slow.

 As Table N.1 indicates, W uses a row-oriented matrix whereas AES uses a column-oriented

matrix. There is no technical reason to prefer one orientation over another, because one can

easily construct an equivalent description of the same cipher, exchanging rows with columns.

Overall Structure

Figure N.3 shows the overall structure of W. The encryption algorithm takes a 512-bit block of

plaintext and a 512-bit key as input and produces a 512-bit block of ciphertext as output. The

encryption algorithm involves the use of four different functions, or transformations: add key

(AK), substitute bytes (SB), shift columns (SC), and mix rows (MR), whose operations are

explained subsequently. W consists of a single application of AK followed by 10 rounds that

involve all four functions. We can concisely express the operation of a round r as a round

function RF that is a composition of functions:

 RF(K
r
) = AK[K

r
] # MR # SC # SB (N.1)

where K
r
 is the round key matrix for round r. The overall algorithm, with key input K, can be

defined as follows:

!

W K() = "
r=1

10

RF K
r()

$
%

&

'
(oAK K0()

where the large circle indicates iteration of the composition function with index r running from 1

through 10.

 The plaintext input to W is a single 512-bit block. This block is treated as an 8 " 8 square

matrix of bytes, labeled CState. Figure N.4 illustrates that the ordering of bytes within a matrix

is by row. So, for example, the first eight bytes of a 512-bit plaintext input to the encryption

cipher occupy the first row of the internal matrix CState, the second eight bytes occupy the

second row, and so on. The representation of the linear byte stream as a square matrix can be

concisely expressed as a mapping function µ. For a linear byte array X with elements x
k
 (0 ! k !

 N-8

63), the corresponding matrix A with elements a
i,j

 (0 ! i, j !7), we have the following

correspondence:

A = µ(X) $ a
i,j

 = x
8i + j

 Similarly, the 512-bit key is depicted as a square matrix KState of bytes. This key is used

as input to the initial AK function. The key is also expanded into a set of 10 round keys, as

explained subsequently.

 We now look at the individual functions that are part of W.

 N-9

Table N.2 Whirlpool S-Box

(a) S-box

 0 1 2 3 4 5 6 7 8 9 A B C D E F

0 18 23 C6 E8 87 B8 01 4F 36 A6 D2 F5 79 6F 91 52

1 60 BC 9B 8E A3 0C 7B 35 1D E0 D7 C2 2E 4B FE 57

2 15 77 37 E5 9F F0 4A CA 58 C9 29 0A B1 A0 6B 85

3 BD 5D 10 F4 CB 3E 05 67 E4 27 41 8B A7 7D 95 C8

4 FB EE 7C 66 DD 17 47 9E CA 2D BF 07 AD 5A 83 33

5 63 02 AA 71 C8 19 49 C9 F2 E3 5B 88 9A 26 32 B0

6 E9 0F D5 80 BE CD 34 48 FF 7A 90 5F 20 68 1A AE

7 B4 54 93 22 64 F1 73 12 40 08 C3 EC DB A1 8D 3D

8 97 00 CF 2B 76 82 D6 1B B5 AF 6A 50 45 F3 30 EF

9 3F 55 A2 EA 65 BA 2F C0 DE 1C FD 4D 92 75 06 8A

A B2 E6 0E 1F 62 D4 A8 96 F9 C5 25 59 84 72 39 4C

B 5E 78 38 8C C1 A5 E2 61 B3 21 9C 1E 43 C7 FC 04

C 51 99 6D 0D FA DF 7E 24 3B AB CE 11 8F 4E B7 EB

D 3C 81 94 F7 B9 13 2C D3 E7 6E C4 03 56 44 7F A9

E 2A BB C1 53 DC 0B 9D 6C 31 74 F6 46 AC 89 14 E1

F 16 3A 69 09 70 B6 C0 ED CC 42 98 A4 28 5C F8 86

(b) E mini-box

u 0 1 2 3 4 5 6 7 8 9 A B C D E F

E(u) 1 B 9 C D 6 F 3 E 8 7 4 A 2 5 0

(c) E–1 mini-box

u 0 1 2 3 4 5 6 7 8 9 A B C D E F

E–1(u) F 0 D 7 B E 5 A 9 2 C 1 3 4 8 6

(d) R mini-box

u 0 1 2 3 4 5 6 7 8 9 A B C D E F

R(u) 7 C B D E 4 9 F 6 3 8 A 2 5 1 0

 N-10

The Nonlinear Layer SB

The substitute byte function (SB) is a simple table lookup that provides a nonlinear mapping. W

defines a 16 " 16 matrix of byte values, called an S-box (Table N.2), that contains a permutation

of all possible 256 8-bit values. Each individual byte of CState is mapped into a new byte in the

following way: The leftmost 4 bits of the byte are used as a row value and the rightmost 4 bits

are used as a column value. These row and column values serve as indexes into the S-box to

select a unique 8-bit output value. For example, the hexadecimal value2 {95} references row 9,

column 5 of the S-box, which contains the value {BA}. Accordingly, the value {95} is mapped

into the value {BA}. The SB function can be expressed by the following correspondence, for an

input matrix A and an output matrix B:

B = SB(A) $ b
i,j

 = S[a
i,j

], 0 ! i, j !7

where S[x] refers to the mapping of input byte x into output byte S[x] by the S-box.

 The S-box can be generated by the structure of Figure N.5. It consists of two nonlinear

layers, each containing two 4 " 4 S-boxes separated by a 4 " 4 randomly generated box. Each of

the boxes maps a 4-bit input into a 4-bit output. The E box is defined as E(u) = {B}u if u " {F}

and E({F}) = 0, where arithmetic is performed over the finite field GF(24) with the irreducible

polynomial f(x) = x4 + x + 1.

 The SB function is designed to introduce nonlinearity into the algorithm. This means that

the SB function should exhibit no correlations between linear combinations of input bits and

linear combinations of output bits. In addition, differences between sets of input bits should not

propagate into similar differences among the corresponding output bits; put another way, small

input changes should cause large output changes. These two properties help to make W resistant

against linear and differential cryptanalysis.

The Permutation Layer SC

2 As we did for AES, a hexadecimal number is indicated by enclosing it in curly brackets when

this is needed for clarity.

 N-11

The permutation layer (shift columns) causes a circular downward shift of each column of

CState except the first column. For the second column, a 1-byte circular downward shift is

performed; for the third column, a 2-byte circular downward shift is performed; and so on. The

SC function can be expressed by the following correspondence, for an input matrix A and an

output matrix B:

B = SC(A) $ b
i,j

 = a
(i–j) mod 8,j

0 ! i, j !7

 The shift column transformation is more substantial than it may first appear. This is

because CState is treated as an array of eight 8-byte rows. Thus, on encryption, the first 8 bytes

of the plaintext are copied to the first row of CState, and so on. A column shift moves an

individual byte from one row to another, which is a linear distance of a multiple of 8 bytes. Also

note that the transformation ensures that the 8 bytes of one row are spread out to eight different

rows.

The Diffusion Layer MR

Recall from Chapter 3 that for a function that exhibits diffusion, the statistical structure of the

input is dissipated into long-range statistics of the output. This is achieved by having each input

bit affect the value of many output bits; generally, this results in each output bit being affected by

many input bits. The diffusion layer (mix rows) achieves diffusion within each row individually.

Each byte of a row is mapped into a new value that is a function of all eight bytes in that row.

The transformation can be defined by the matrix multiplication: B = AC, where A is the input

matrix, B is the output matrix, and C is the transformation matrix:

!

C =

01 01 04 01 08 05 02 09

09 01 01 04 01 08 05 02

02 09 01 01 04 01 08 05

05 02 09 01 01 04 01 08

08 05 02 09 01 01 04 01

01 08 05 02 09 01 01 04

04 01 08 05 02 09 01 01

01 04 01 08 05 02 09 01

"

$
$
$
$
$
$
$
$

%

&

'
'
'
'
'
'
'
'

 N-12

 Each element in the product matrix is the sum of products of elements of one row and one

column. In this case, the individual additions and multiplications3 are performed in GF(28) with

the irreducible polynomial f(x) = x8 + x4 + x3 + x2 + 1. As an example of the matrix

multiplication involved, the first element of the output matrix is

 b
0,0

 = a
0,0

 ! (9 • a
0,1

) ! (2 • a
0,2

) ! (5 • a
0,3

) ! (8 • a
0,4

) ! a
0,5

 ! (4 • a
0,6

) ! a
0,7

 Note that each row of C is constructed by means of a circular right shift of the preceding

row. C is designed to be a maximum distance separable (MDS) matrix. In the field of error-

correcting codes, an MDS code takes as input a fixed-length bit string and produces an expanded

output string such that there is the maximum Hamming distance between pairs of output strings.

With an MDS code, even multiple bit errors result in a code that is closer to the correct value

than to some other value. In the context of block ciphers, a transformation matrix constructed

using an MDS code provides a high degree of diffusion [JUNO04]. The use of MDS codes to

provide high diffusion was first proposed in [RIJM96].

 The matrix C is an MDS matrix that has as many 1-elements as possible (3 per row).

Overall, the coefficients in C provide for efficient hardware implementation.

The Add Key Layer AK

In the add key layer, the 512 bits of CState are bitwise XORed with the 512 bits of the round

key. The AK function can be expressed by the following correspondence, for an input matrix A,

an output matrix B, and a round key K
i
:

B = AK[K
i
](A) $ b

i,j
 = a

i,j
 ! k

i,j
, 0 ! i, j !7

3 As we did for AES, we use the symbol • to indicate multiplication over the finite field GF(28)

and ! to indicate bitwise XOR, which corresponds to addition in GF(28).

 N-13

Key Expansion for the Block Cipher W

As shown in Figure N.3, key expansion is achieved by using the block cipher itself, with a round

constant serving as the round key for the expansion. The round constant for round r (1 ! r ! 10)

is a matrix RC[r] in which only the first row is nonzero, and is defined as follows:

 rc[r]
0,j

 = S[8(r – 1) + j], 0 ! j ! 7, 1 ! r ! 10

 rc[r]
i,j

 = 0, 1 ! i ! 7, 0 ! j ! 7, 1 ! r ! 10

 Each element of the first row is a mapping using the S-box. Thus, the first row of RC[1] is

S[0] S[1] S[2] S[3] S[4] S[5] S[6] S[7] =

18 23 C6 E8 87 B8 01 4F

 Using the round constants, the key schedule expands the 512-bit cipher key K onto a

sequence of round keys K
0
, K

1
, …, K

10
:

 K
0
 = K

 K
r
 = RF[RC[r]](K

r–1
)

where RF is the round function defined in Equation (N.1). Note that for the AK phase of each

round, only the first row of KState is altered.

REFERENCES

BARR03 Barreto, P., and Rijmen, V. "The Whirlpool Hashing Function." Submitted to

NESSIE, September 2000, revised May 2003.

 N-14

BLAC02 Black, J., and Rogaway, P. "Black-Box Analysis of the Block-Cipher-Based Hash

Function Constructions from PGV." Advances in Cryptology – CRYPTO ’02, 2002.

JUNO04 Junod, P., and Vaudenay, S. "Perfect Diffusion Primitives for Block Ciphers:

Building Efficient MDS Matrices." Selected Areas in Cryptography 2004, Waterloo, Canada,

August 9-10, 2004.

MIYA90 Miyaguchi, S.; Ohta, K.; and Iwata, M. "Confirmation that Some Hash Functions

Are Not Collision Free." Proceedings, EUROCRYPT '90, 1990; published by Springer-

Verlag.

PREN93a Preneel, B.; Govaerta, R.; and Vandewalle, J. "Hash Functions Based on Block

Ciphers: a Synthetic Approach." Proceedings, Advances in Cryptology – CRYPTO '93, 1993

PREN93b Preneel, B. "Cryptographic Hash Functions." Proceedings of the 3rd Symposium

on State and Progress of Research in Cryptography, 1993.

RIJM96 Rijmen, V.; Daemen, J.; Preneel, B.; Bosselares, A.; and Win, E. "The Cipher

SHARK." Fast Software Encryption, FSE '96, 1996.

!"#$%&'()*''+,-&.',/'0"1#.&'23&%43",1',/'5467

!$183",1'97467'8,-&'&:$4.6';.,8<'.&1#37=

(,3&>'3%"41#$.4%'74387'"1-"843&6'&18%?@3",1'<&?'"1@$3

!"'A'"37';.,8<',/'B&664#&'"1@$3

#"'A'"37'"13&%B&-"43&'7467'C4.$&

$'A'@.4"13&D3E'%'A'&18%?@3",1'<&?E'&'A'8"@7&%3&D3

'''A'/&&-'/,%F4%-'C4.$&

$G'%G'41-''''841';&'87,6&1'/%,B'37&'6&3'9HG'!"G'#"I*G'!"'!'#"I*=

J
$

&

%

''

#"

!"#"$%&!"#$%

&#'()*!+,-!!.*%%/'*!0#'*%$!1*2*)/$#32!4%#2'!56#)78337

'9 '- '!

5
:;!<

(=

(9
5

.*%%/'*

(-

>9-

+3$*?!$)#/2'(7/)!6/$@6!A/)B%!B*C!#28($

($!<

6/%6

@3D*

>9-

5

>9-

>9-!"#$%

)!"#$%

)

>9-!"#$% >9-!"#$%

->E!"#$%

>9-

9==,,=

!""#$%&'"#()*
!+

,-!.'/)0/

1&21/./&/)#2*/)1

13.4/#5%-&6'1

6.0#$%718
%
&
'
"
#9

8
%
&
'
"
#9
+

!""#$%&'"#()*

1&21/./&/)#2*/)1

13.4/#5%-&6'1

6.0#$%71

!""#$%&'"#()*

:.;3)$/)0/

<.=&$)#>?@##A3.$-;%%-#:.;3)$#A

1&21/./&/)#2*/)1

13.4/#5%-&6'1

6.0#$%71

B
)*
#)
0
;
!
'
1.
%
'

B)*

!9
8:C9D

8:C9+D

!""#$%&'"#5%'1/!'/

1&21/./&/)#2*/)1

13.4/#5%-&6'1

6.0#$%71

B
)*
#)
0
;
!
'
1.
%
'

!""#$%&'"#5%'1/!'/
!9+

!"! !"" !"# !"$

!"%& !"%' !"%! !"%"

!"&(!"&% !"&& !"&'

!"&) !"&* !"'(!"'%

!"(!"% !"& !"'

!") !"* !"%(!"%%

!"%# !"%$!"%) !"%*

!"&! !"&" !"&# !"&$

!"'# !"'$!"') !"'*

!"!! !"!" !"!# !"!$

!""& !""' !""! !"""

!"#(!"#% !"#& !"#'

!"'& !"'' !"'! !"'"

!"!(!"!% !"!& !"!'

!"!) !"!* !""(!""%

!""# !""$!"") !""*

#(+(

#%+(

#&+(

#'+(

#(+%

#%+%

#&+%

#'+%

#(+&

#%+&

#&+&

#'+&

#(+'

#%+'

#&+'

#'+'

#(+!

#%+!

#&+!

#'+!

#(+"

#%+"

#&+"

#'+"

#(+#

#%+#

#&+#

#'+#

#(+$

#%+$

#&+$

#'+$

#!+(

#"+(

##+(

#$+(

#!+%

#"+%

##+%

#$+%

#!+&

#"+&

##+&

#$+&

#!+'

#"+'

##+'

#$+'

#!+!

#"+!

##+!

#$+!

#!+"

#"+"

##+"

#$+"

#!+#

#"+#

##+#

#$+#

#!+$

#"+$

##+$

#$+$

,-./01234!22256-0789972:;<0-=2><0/?</01

!"#$%&'%(!")&*+&,-%.' !"%.("/0&1!#2.(&3/%(!4&@><;<1

!"#!

$%&'()

$%&'()

$%&'()

$%&'()

*

+',-./%012%%3456/4/7(8('97%9:%;<'.65996%=>?9@

!"#!

