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ABSTRACT and therefore adapts the resulting network to these patterns. 

Artificial neural network algorithms were originally designed 

to model human neural activities. They attempt to recreate 

the processes involved in such activities as learning, short 

term memory, and long term memory. Two widely used 

unsupervised artificial neural network algorithms are the 
Self-Organizing Map (SOM) and Adaptive Resonance 
Theory (ART2). Each was designed to simulate a particular 
biological neural activity. Both can be used as unsupervised 
data classifiers. 

This paper compares performance characteristics of two 

unsupervised artificial neural network architectures; the SOM 
and the ART2 networks. The primary factors analyzed were 

classification accuracy, sensitivity to data noise, and 

sensitivity of the algorithm control parameters. Guidelines 
are developed for algorithm selection. 

Introduction 
The training of artificial neural networks can be separated 

into two main categories: supervised and unsupervised. 

Supervised training requires prior knowledge of what the 

network is expected to do. The network must be trained to 
map the exemplars of the training set to known outcomes. 

Supervised network training can monitor the convergence of 
the network toward the expected outcome and use it as a 

criterion to stop training. Unfortunately, because the training 
is focused on the expected outcome, unexpected possibilities 

may be either incorrectly mapped or are rejected as noise. 

The prior knowledge associated with the training set creates 
a classilication bias in the network. 

Unsupervised training requires no prior knowledge of the 

problem domain. The network groups exemplars in the data 

set with other exemplars having similar characteristics. 
Competitive training is the procedure normally used to 
control training in unsupervised machine learning algorithms. 
In competitive training, the output node with the "best" or 
maximal output is selected for training. Other nodes may 
receive reduced training or no training at all. This training 
algorithm reinforces dominant patterns in the training data 
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Because prior knowledge is not used in the training of the 

network, bias toward specific expectations is not introduced. 

This does not mean that no bias exists. A critical assumption 

is that the training data set is representative of the problem 
domain. When the training data is not totally representative 
of the problem domain, the network's classification accuracy 
is affected. Also, since there is no expected outcome, 
stopping criterion other than the convergence of the network 

restJlts must be chosen. Typically, the algorithm is trained 
for a predetermined number of epochs. This criterion can 

sometimes allow the network to overtrain. 

This paper focuses on comparing the performance 

characteristics of two unsupervised artificial neural network 

architectures; the Self-Organizing Map (SOM) and the 
Adaptive Resonance Theory (ART2) networks. The SOM 

maps vectors from an n-dimensional space to a two- 
dimensional output network. The ART2 algorithm maps 
vectors from an n-dimensional space to a one-dimensional" 

output network. The primary factors analyzed were 

classification accuracy, sensitivity to data noise, and 
sensitivity of the algorithm control parameters. Accuracy was 

determined by. comparing algorithm classifications to the 

expected classifications. 

Self-Organizing Map 
Many neurological systems exhibit a self-organizing 

inclination. Nerves in the human auditory system are 

organized so that neighboring nodes respond to similar sound 
frequencies. This spatial distribution inspired Teuvo 

Kohonen to develop his Self-Organizing Map [6]. The SOM 

is a competitive unsupervised learning algorithm. Mutual 

lateral interactions are developed between the output nodes 
by training neighborhoods of nodes to respond to an input 

vector. The size of  these training neighborhoods linearly 
decreases over a training session. The result is a trained 
network where neighboring nodes share similar properties 

and distant nodes are obviously different. This property is 
what allows SOM to organize and group input data over its 
two-dimensional output surface. 

The SOM defines a map 

(l) 

This mapping can also be defined as 
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, :p (x , , x ;  ..... x.) ---~ (a.~) im.- m,I < lm, -m, .J  for n>O (6) 
(2) 

where f is a non-linear mapping of the probability 

distribution of_an n-dimensional space to a two dimensional 
space. 

The normal activation of the nodes in a SOM network is the 
main principle governing the SOM le~rning algorithm. This 
activation is usually evaluated using the dot product of the 

input vector, x, with the weight vectors, m i (i = 1 . . . . .  n) of 
the connecting network. 

x .  m ,  = Itx~llm,~ cos  O (3) 

The value IIx II is the Euclidean magnitude of the vector x, m i 

is the weight vector associated with a given output node 

(a,b), and 0 is the angle between the vectors x and m i. These 
weight vectors are randomly initialized within the bounds of 

the maximum and minimum values of the training input 
vectors. Kohonen referred to these weight vectors as the 
codebook vectors since their final values would define the 

encoded mapping. The maximum activated 6ode is selected 
for training. A node is maximal when the value of its dot 
product i s  maximal. The dot product increases to its 
maximum as the angle between the input vector and the 

weight vector approaches zero. Therelbre, minimizing the 

angle or distance between the input vector and a giver L 

weight vector maximizes the activation output. This 

comparison involves calculating the Euclidean distance 
between input vector and the weight vectors and choosing a 
weight vector m such that 

I Ix -  m,II = ra in ,  {lix - m. l l }  (4) 

for a given input vector x and all weight vectors m i. 

Once the maximum output node, (a, b)~, is selected, the 

corresponding weight vector, me, associated with this node is 

adjusted to minimize the distance between me and the input 

vector. A learning rate factor, bet(t) is used to control the 
amount of adjustment a particular weight vector receives. 

The updated value of m at time t is computed as 

rn  ~'tl = m . { t - 1 ) * h , . ( t ) ( x i t - l !  ' " ., , - m.,t-1,, (5) 

The SOM trains nodes in a neighborhoo d, N¢ surrounding an 
activated node, (a, b)¢ to react to similar input stimuli. This 

feature of the SOM provides the self-organizing property of 
the algorithm. The radius of each training neighborhood 
decreases linearly with time during the training session. In 
later training epochs, the training radius decreases until only 

the activated node is trained. The result is a trained network 
where neighboring nodes share similar properties as shown 

in Equation 6. 

Two types  of  neighborhoods are used by SOM. The 
"Bubble" type neighborhood defined by 

{[ (t} i< N; 

n , , I t }  = 

(7) 

where hi(t) is the amount of training that node i in N 
receives at time t. This method applies a constant training 

factor to all nodes within the neighborhood of the selected 

node. Figure 1 shows this situation. 

Figure I Bubble neighborhood 

T h e  "Gaussian" type neighborhood is defined by 

/ I I r= -  r, II ~ ! 
= a(t)  • e x p !  / 

2 ca(t) / q 

(8) 

where h~(t) is the amount of training that node i in N 
receives at time t and o(t) defines the width of the 

neighborhood. This method applies a training factor that non- 

linearly decreases as the distance from the selected node 
increases. Figure 2 shows this situation. 

J 
r ~ .i I-- .I / / f i 

Figure 2 Gausslan neighborhood 

The SOM provides for the use of  two possible array training 
topologies, rectangular and hexagonal. In the rectangular 

topology, nodes are arranged in rows and columns. Each 

node, m c, can interact with the eight nodes surrounding it. 

All distances are measured by simple comparisons of the 
node's X and Y coordinates. Neighborhoods in this topology 
are rectangular regions surrounding the node mr. Figure 3 

illustrates this topology. 

Figure  3 
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The hexagonal topology allows for radial node interaction. 
Starting with the second row, every other row of nodes is 
shil~ed half a node's width to the right. This shift changes the 
topology so that each interior node is bounded by six, rather 
than eight nodes. Therefore, a node, m e, can interact with the 
two nodes above, the two nodes belo~v, the node to the fight, 

and the node to the le~. Neighborhoods in this topology are 

hexagonal regions surrounding node me. Figure 4 illustrates 
this topology. 

Figure 4 l texagonal  topology 

The SOM algorithm consists of (for each training vector): 
'1) Determine the radius for training N .  

2) For vector, x, select maximal node, m.  

3) Calculate [ [ x - m , [ I -  

4) Train all nodes within neighborhood N of me. 
5) Repeat steps I through 4. 

A training epo.ch applies this sequence once to each vector in 
the training set. Training continues until the predetermined 
maximum number of training epochs is reached. 

Adaptive Resonance Theory 
One of the intriguing features of human memory is the ability 
to learn new things while retaining previously learned 
information. Unfortunately, most artificial neural networks 

require retraining using the complete set of exemplars if new 

information is added. 

The problem of adding new information to the memory of  an 

already trained network describes what Stephen Grossberg 

[21 calls the stability-plasticity dilemma. The dilemma can be 
stated as a series of questions: How can a learning system 

remain adaptive (plastic) in response to significant input, yet 

remain stable in response to irrelevant input? How does the 
system know to switch between its plastic and its stable 
modes? How can the system retain previously learned 
information while continuing to learn new things? 

Carpehter and Grossberg [2] designed the ART2 architecture 
with these considerations in mind. The key to solving the 
stability-plasticity dilemma is to add a feedback mechanism 

between the competitive classification layer (F2) and the input 

layer (Fi) of a network (see Figure 5). A pattern is entered 
on the input nodes and fed forward to the classification nodes 
through a weighted network. Once a node is selected in the 
competitive classification layer, then results are fed back to 
the input layer through another weighted network. I f  the 

feedback information matches that at the input layer, 'then 
this classification is considered a match and the feed forward 
and feedback networks are trained for this pattern. If the 
feedback does not produce a match, then the selected 
classification node is eliminated from further active 
competition and the input is fed forward again without 

providing any training to the feedforward or the feedback 

networks. An input pattern-may be matched to previously 

learned pattern classifications or it may be form a new 

classification by itself. 

This feedback mechanism facilitates the learning of new 

information without destroying old information. The network 

quickly searches for an appropriate output classification and, 
only when a match is found, is any training applied to the 

network weights reinforcing this classification. Previous 
training, supporting other pattern classifications, is not 

affected by this new training. 

A series of differential.equations govern the activities of the 
individual processing elements. To deal successfully with 

analog input patterns, they split the F t input layer into a 

number of sublayers containing both feedforward and 
feedback connections. Figure 5 shows the resulting structure. 

Carpenter and Grossberg [21 provide detailed instructions for 

calculating the values shown in Figure 5. 
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Figure 5 ART2 topology [5] 

Patterns of activity that develop within the nodes in the F t 

and F z layers of the attentional subsystem are called short- 
term memory (STM) traces because they exist only in 
association with a single application of an input vector. The 
weights associated with the bottom-up and top-down 
connections between F~ and F~ are called long-term memory 
(LTM) traces because they encode information that remains a 
part of  the network for an extended period. 

Evaluation of SOM and ART2 
Two data sets were used in this evaluation. The first set is 

the Iris data set [3] which is a good set containing noise. The 

second set is a generated set devised by Breiman [1]. The 
Breiman approach allows one to control the amount of noise 
present in the data. "lqwce specific areas of performance; 
classification accur:,cy, sensitivity to noise in the data, and 
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sensitivity to adjustments in the algorithm parameters, were 

measured. 

The Iris data set consists of measurements from 150 iris 

'flowers. The measurements are part of the Anderson iris data 

set made famous by Fisher 14]. The four measurements are 

sepal width, sepal length, petal width, and petal length for 

each flower. The sample contains 50 flowers from each of 

three varieties, iris setosa, iris virginica, and iris versicolor. 

This data can be regarded as 150 four dimensional vectors in 
R 4. An additional variable, the iris variety, is associated with 
each four dimensional vector. This can be used for labeling 

and classification verification. 

The Breiman data set consists of 300 vectors in R 2j 

representing three generated waveform classes (100 samples 

for each waveform). Three simple waveforms, hl(t ), h2(t), 

and h3(t ) are the basis for the generated classes. Figure 6 

shows a graph of hi(t). 

• h ( t )  

. -  i i J i ~ ~ i i 

Figure 6 ht(t) waveform 

these experiments, when ART2 grouped a vector with other 

patterns whose classification did not match the vector's 

expected classification then this output mapping was called 

an error. This concept was used in evaluating the accuracy of 

the SOM also. Unlabeled node.s were treated as belonging to 

a labeled region, if a vector mapped into an unlabeled node 

in a region and the vector's classification matched that of the 

region, it was considered a correct mapping. If the mapping 

occurred on an unlabeled node in a border between two 

regions, and the vector's classification matched one of the 
regional classifications, this was treated as a completion of 
the region's classification into the neutral border nodes and 

was treated as a correct mapping. Only when a vector 

mapped into a node with a label different than the vector's 

classification or when a vector mapped into an unlabeled 

node within a region whose label did not match the vector's 

classification was the test mapping considered erroneous. 

The Iris data set was presented to two SOM networks; a 

10 x 10 output array and a 5 x 5 output array. The primary 

difference between the final trained networks was the 

increased number of unlabeled nodes in the larger array. The 

accuracy results for 4-fold cross-validation on both networks 

is shown in Table I. Each SOM was trained for 11,000 

epochs. 

The h:(t), and h3(t) wavelbrms are similar except they peak 
at 15 and 11 respectively. 

Each class consists of a random convex combination of two 

of these waveforms sampled at 21 intervals with noise added. 
To generate a class I vector x, a single uniform (0,I) random 

number u and 21 N(0, 2 )  random numbers c~ . . . . .  e21 were 

generated. Each component x t of vector x was generated by 

x, = uh,( t)  + (1 -u)h=( t )  + e,, t = 1 ..... 21 (9) 

Class 2 vectors are generated form hi(t), and h3(t ). Class 3 

.vectors are generated from hz(t), and h3(t). 

For training and testing, a method called v-fold cross- 
validation was used [1]. The data set I is randomly divided 

into V subsets of equal size. Then for every v, v = 1 . . . .  , V, 

Overall, the total performance of the two mappings was 

consistent but the increased space of the 10 x 10 array and 

the assumption of regional accuracy helped the larger array 

to perform better. The main tradeoff in choosing a larger 

SOM network is that the training time is increased. Since the 
computations are mathematically simple, this is not a severe 

tradeoff. 

The ART2 network quickly trained on the 4-fold Iris 

partitions. Three of the four partitions reached their 

maximum accuracy in less than ten training epochs. THe 

fourth took fifteen epochs. This is significant since ART2 is 

computationally more complex than SOM. The accuracy for 

the 4-fold partitions and the overall average is shown in 

Table 1. In these experiments, ART2 outperformed SOM. In 

addition, the variance of the results" for the four test sets was 

smaller for ART2. 

v-fold IRI IR2 IR3 IR4 Average 

SOM 5X5 86.5% 100.0% 94.6% 94.7% 93.95% 4.82 
SOM 10XI0 89.2% 94.7% 97.3% 97.4% 94.65% 3.33 

ART2 97.3 % 94.7 % 100.0% 97.4 % 97.35 % 1.87 

Table 1 SOM 

use 1 -  I v as the training set and .t v as the test set. The 

resulting V classifications of the training sets will 
approximate the classification of,P and the accuracy of the ! v 

test sets will approximate the accuracy of !. 

Classification accuracy was determined by comparing the 
algorithm classifications to the expected classifications. For 

SOM and ART2 Iris Accuracy 

The iris data was a good initial data set. The parameters of 

the SOM were not highly sensitive and tolerated quite a bit of 

change without much impact on the training results. The 

primary effect of most parameter changes was the amount of 

time the network took to train. More complex networks 
(array size, number of training epochs, initial size of training 

neighborhoods..-:c.) took longer to train. 
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tl \ o 2 

0.833 

0.667 
0.5 

1.0 2.0 3.0 
80.3 (5.10) 74.3 (5.44) 72.3 (7.26) 

97.7 (0.78) 85.0 (2.77) 84.7 (2:20) 

99.3 (0.83) 94.3 (2.26) 

Table 2 Average SOM Breiman Accuracy 

90.7 (3.11) 

u \ c z 3.0 
0.833 73.7 (3.56) 

0.667 7 9 . 0  (3.08/ 

0.5 

1.0 2.0 
69.0 (5.02) 71.3 (4.14) 

92.7 (1.31) i 82.7 (1.69) 

97.7 (1.32) 91.0 (2.70) 

Table  3 Average  A R T 2  Bre iman  Aecnracy  

The primary differences between SOM and ART2 involved 

the final representation of  the classified data. The ART2 

algorithm creates a set of  data pattern classes. The starting 

set of  output nodes is trimmed down to only those nodes that 

have some classification mapped onto them. A vector can 

either be correctly mapped to a exact classification node or 

incorrectly mapped to another node. There is little 

relationship between tim nodes other than the classification of  

the nodes. 

The SOM algorithm, on the other hand, imposes a spatial 

relationship on its two dimensional output array, i f  two 

vectors map into adjacent nodes a similarity of  structure is 

implied. These vectors are more alike than vectors that map 

into more distant nodes. This relationship is not 

mathematically exact. For instance, it can not be said that 

two vectors, one node apart, are twice as similar as two 

vectors, two nodes apart. The only implication is that the 

vectors, one node apart, are more similar than those two 

nodes apart. All nodes are retained in the final network. The 

output mappings are good graphic depictions of  the data and 

the relationships between the data vectors. Where definite 

separations exist, such as between the setosa and the other 

two euttivars, a clear boundary shows t,p on the map. Where 

noise blurs the distinctions between classes, such as between 

virginica and versicolor,  the mapping shows vague, 

• intermixed boundaries. This result c, reates classification 

regions on the output node array. This regionality attribute of  

SOM allows unclassified nodes to be included in the region 

with classified nodes. 

Tile strength of ART2 is its ability to match patterns 

accurately, in few epochs, and later be modilied to include 

additional information without losing formerly trained 

classifications. The increased computational complexity was 

offset by a powerful algorithm which needed few epochs to 

train. The classifications were clear and distinct with a solid 

grouping accuracy. The parameters associated with ART2 

were more sensitive to adjustment. The p parameter was 

especially sensitive to small changes of  its value and some 

experimentation was necessary to find a good value for the 

data used. Experimentation was used to choose the other 

parameters in this research so that they were accurate, 

82.7 (2.72) 

efficient,  and comparable between the two algorithms, 

though not necessarily optimal. 

The Breiman data was generated using three specific uniform 

numbers, 0.5, 0.6667, and 0.8333, and three noise 

variances, 1.0, 2.0, and 3.0 resulting in nine data sets with 

known noise levels. This data generation plan introduced two 

types of  classification noise to test the algorithms. First, as 

the uniform number, u, approaches one, the class I and the 

class 2 base waveforms become difficult to differentiate. 

Next, as the noise variance, d ' ,  increases, it may overpower.  

any minor base waveform differences. Each data set was 

partitioned into 5-fold Gross-validation sets for training and 

testing. 

The SOM algorithm was trained and tested using a 10 x 10 

output array configuration based on the Iris dataset results. 

The average classification accuracy and standard deviation 

are shown in Table 2. As the variance cr z increases, the 

accuracy decreases. The classification confusion induced as 

u approaches one also reduces the classification accuracy, as 

would be expected. 

The ART2 algorithm was trained and tested using the same 

Breiman datasets. The  accuracy and standard deviation of  the 

nine 5-fold sets is shown in Table 3. The algorithm's 

accuracy declines as the noise variance increases. It also has 

difficulty as u approaches one and the class 1 and class 2 

waveforms become less distinct. Figure 7 graphs the 

accuracy of  the datasets for each given value of u as the 

noise variance increases. The Breiman data was a good test 

for these algorithms since it was a generated dataset and its 

paralneters could be controlled. Tim SOM algorithm did not 

have any real problem classifying each 5-fold dataset. The 

classification accuracy decreased as the variance o f  the noise 

was increased for each given value of  u. As the value of u 

approached one, the class 1 and the class 2 waveforms 

became hard to distinguish and the accuracy dropped 

accordingly• 
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Figure 7 Accuracy vs. Noise for Breiman Data 

The ART2 algorithm did not perform as well as the SOM on 

the Breiman data. It showed a sensitivity to noise as the 

variance increased when u equaled 0.5 and 0.667. This 

accuracy decline was not present when u equaled 0.833. The 

standard deviation values for this last plot indicate a fairly 

level range. This change in accuracy indicates that the 

confusion between ~he class 1 and the class 2 waveforms has 

more effect on ART2 than the noise once the value of u gets 

large enough. 

C o n c l u s i o n s  

The SOM algorithm is computationally simple. It is straight 

forward to find a set of parameters that produce reasonable 

results. The two-dimensional relationship of the SOM output 

nodes conveys additional intbrmation beyond the strict 

classification of a particular input vector. Based on the 

proximity of an activated output node to a classification 
region, one can infer a certain amount of similarity of the 

given input vector .to vectors of that classification. The 

regionality associated with the classification nodes 

contributes to the good classification accuracy of this 

algorithm. Therefore SOM is a good tool to do quick 

analysis of multi-variate data because it is accurate, 

reasonably tolerant of noise, and allows easy parameter 

initialization. 

The ART2 algorithm's strength is its ability to learn a new 

pattern without having to retrain on all of the already known 

patterns. This capability adds to the algorithm's 

computational complexity and training time. The network 

parameters are a bit more sensitive to adjustment than those 

in SOM. The vigilance parameter, P, seemed to be the most 

sensitive. This parameter is a measure of how well a 

classification matches the input pattern and how the 

plasticity-stability, feedback mechanism is controlled. A little 

experimentation with several values will produce an accuracy 

versus O value curve from which a good value can be 

determined. As the base wave forms became less 

distinguishable the algorithm's classification accuracy was 
dominated by the waveform classification error rather than 

the noise. This indicates that there is a limit to how well 
ART2 can differentiate subtle input pattern differences for a 
particular value of P- 
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