SOM_PAK

The

Self-Organizing Map

Program Package

Version 3.1 (April 7, 1995)

Prepared by the

SOM Programming Team of the

Helsinki University of Technology

Laboratory of Computer and Information Science

Rakentajanaukio 2 C, SF-02150 Espoo

FINLAND

Copyright c) 1992-1995 by

Teuvo Kohonen

Jussi Hynninen

Jari Kangas

Jorma Laaksonen

 1

Contents

1 General 3

2 The principle of the SOM 4

3 Practical advices for the construction of good maps 6

4 Installation of the program package 8

 4.1 Getting the program code : 8

 4.2 Installation in UNIX : 9

 4.3 Installation in DOS : 10

 4.4 Hardware requirements : 11

5 File formats 11

 5.1 Data file format : 11

 5.2 Map file format : 13

6 Application of this package 14

 6.1 The searching program vfind : : : : : : : : : : : : : : : : : 14

 6.2 Using the programs directly : : : : : : : : : : : : : : : : : : 14

 6.3 Program parameters : 14

 6.4 Using the command lines (an example) : : : : : : : : : : : : : : 16

 6.4.1 First stage: Map initialization : : : : : : : : : : : : 17

 6.4.2 Second stage: Map training : : : : : : : : : : : : : : : 17

 6.4.3 Third stage: Evaluation of the quantization error : : : 18

 6.4.4 Fourth stage: Map visualization : : : : : : : : : : : : : 18

7 Description of the programs of this package 19

 7.1 Initialization programs : 19

 7.2 Training programs : 19

 7.3 Quantization accuracy program : : : : : : : : : : : : : : : : : 20

 7.4 Monitoring programs : 20

 7.5 Other programs : 21

8 Advanced features 22

9 Comments on and experiences of the use of this package 25

 9.1 Changes in the package : 25

References 27

 2

1 General

The package at hand, Version 3.1 of SOM_PAK, contains several

amendments to earlier versions, developed to attack large problems.

The most important of them are: possibility to use incomplete data

(i.e. different vector components missing in different items), and

description of data clusters using a grey scale. A number of other

advanced features, already validated by extensive experiments, have

also been added to this version (see Section 8).

This software package contains all programs necessary for the correct

application of the Self-Organizing Map (SOM) algorithm [Kohonen

1989][Kohonen 1990] [Kohonen 1995] in the visualization of complex

experimental data.

 NEW BOOK:

Complete description, with over 1500 literature references, of the SOM

and LVQ (Learning Vector Quantization) algorithms can be found in the

recently published book Kohonen: Self-Organizing Maps (Springer Series

in Information Sciences, Vol 30, 1995). 362 pp.

The Self-Organizing Map represents the result of a vector quantization

algorithm that places a number of reference or codebook vectors into

a high-dimensional input data space to approximate to its data sets

in an ordered fashion. When local-order relations are defined between

the reference vectors, the relative values of the latter are made to

depend on each other as if their neighboring values would lie along an

"elastic surface". By means of the self-organizing algorithm, this

"surface" becomes defined as a kind of nonlinear regression of the

reference vectors through the data points. A mapping from a

high-dimensional data space R^n onto, say, a two-dimensional lattice of

points is thereby also defined. Such a mapping can effectively be used

to visualize metric ordering relations of input samples. In

practice, the mapping is obtained as an asymptotic state in a learning

process.

A typical application of this kind of SOM is in the analysis of

complex experimental vectorial data such as process states, where

the data elements may even be related to each other in a highly

nonlinear fashion.

The process in which the SOM is formed is an unsupervised learning

process. Like any unsupervised classification method, it may also be

used to find clusters in the input data, and to identify an unknown

data vector with one of the clusters. On the other hand, if the data

are a priori known to fall in a finite number of classes,

identification of an unknown data vector would optimally be done by

some supervised learning algorithm, say, the Learning Vector

Quantization (LVQ), which is related to the SOM. The corresponding

software package LVQ_PAK is available at the same address as this

package.

The present program package is thus not intended for optimal

classification of data, but mainly for their interactive monitoring.

NOTE: This program package is copyrighted in the sense that it may be

used freely for scientific purposes. However, the package as a whole,

or parts thereof, cannot be included or used in any commercial

application without

 3

written permission granted by its producents. No programs contained in

this package may be copied for commercial distribution.

This program package is distributed in the hope that it will be

useful, but without any warranty. No author or distributor accepts

responsibility to anyone for the consequences of using it or for

whether it serves any particular purpose or works at all.

2 The principle of the SOM

There exist many versions of the SOM. The basic philosophy, however,

is very simple and already effective as such, and has been implemented

by the procedures contained in this package.

The SOM here defines a mapping from the input data space R^n onto a

regular two-dimensional array of nodes. With every node i, a

parametric reference vector mi in R^n is associated. The lattice type of

the array can be defined as rectangular or hexagonal in this package;

the latter is more effective for visual display. An input vector x in

R^n is compared with the mi, and the best match is defined as

"response": the input is thus mapped onto this location.

The array and the location of the response (image of input) on it are

supposed to be presented as a graphic display. For a more

insightful analysis, each component plane of the array (the numerical

values of the corresponding components of the mi vectors) may also be

displayed separately in the same format as the array, using a gray

scale to illustrate the values of the components. Although this

program package is intended for any UNIX or MS-DOS computer, some

problems are caused by different standards used in the graphics

systems. Therefore we give the output data as numerical arrays, and

expect that the users can easily convert them into graphic displays.

Two programs are provided to convert the resulting map files to

encapsulated postscript image format (see Section 7.4).

One might say that the SOM is a "nonlinear projection" of the probability

density function of the high-dimensional input data onto the

two-dimensional display. Let x in R^n be an input data vector. It may be

compared with all the mi in any metric; in practical applications, the

smallest of the Euclidean distances ||x - mi|| is usually made to define

the best-matching node, signified by the subscript c:

 ||x - mc|| = min{||x - mi||} ; or

 c = arg min{||x mi||} : (1)

Thus x is mapped onto the node c relative to the parameter values mi.

An "optimal" mapping would be one that maps the probability density

function p(x) in the most "faithful" fashion, trying to preserve at

least the local

 4

structures of p(x). (You might think of p(x) as a flower that is

pressed!) Definition of such mi values, however, is far from trivial;

a number of people have tried to define them as optima of some

objective (energy) function (see e.g. [Ritter et al. 1988], [Luttrell

1989], [Kohonen 1991], and [Erwin et al. 1992]). As the existence of

a satisfactory definition is still unclear, we have restricted

ourselves in this package to the stochastic-approximation-type deriva-

tion [Kohonen 1991] that defines the original form of the SOM learning

procedure.

During learning, those nodes that are topographically close in the

array up to a certain distance will activate each other to learn from

the same input. Without mathematical proof we state that useful

values of the mi can be found as convergence limits of the following

learning process, whereby the initial values of the mi(0) can be

arbitrary, e.g., random:

 mi(t + 1) = mi(t) + hci(t)[x(t) - mi(t)] ; (2)

where t is an integer, the discrete-time coordinate, and hci(t) is

the so-called neighborhood kernel; it is a function defined over the

lattice points. Usually hci(t) = h(||rc - ri||; t), where rc in R^2 and

ri in R^2 are the radius vectors of nodes c and i, respectively, in the

array. With increasing ||rc - ri||, hci goes to 0. The average width and

form of hci defines the "stiffness" of the "elastic surface" to be

fitted to the data points. Notice that it is usually not desirable to

describe the exact form of p(x), especially if x is very-high-dimensional;

it is more important to be able to automatically find those dimensions and

domains in the signal space where x has significant amounts of sample values!

This package contains two options for the definition of hci(t). The simpler

of them refers to a neighborhood set of array points around node c. Let this

index set be denoted Nc (notice that we can define Nc = Nc(t) as a function

of time), whereby hci = alpha(t) if i in Nc and hci = 0 if i not in Nc, where

alpha(t) is some monotonically decreasing function of time (0 < alpha(t) < 1).

This kind of kernel is nicknamed "bubble", because it relates to certain

activity "bubbles" in laterally connected neural networks [Kohonen 1989].

Another widely applied neighborhood kernel can be written in terms of the

Gaussian function,

 hci = alpha(t) * exp(-(||rc-ri||^2)/(2 rad^2(t))); (3)

where alpha(t) is another scalar-valued "learning rate", and the

parameter rad(t) defines the width of the kernel; the latter

corresponds to the radius of Nc above. Both alpha(t) and rad(t) are

some monotonically decreasing functions of time, and their exact forms

are not critical; they could thus be selected linear. In this package

it is furher possible to use a function of the type alpha(t) = A/(B + t),

where A and B are constants; the inverse-time function is

justified theoretically, approximately at least, by the so-called

stochastic

 5

approximation theory. It is advisable to use the inverse-time type

function with large maps and long training runs, to allow more

balanced finetuning of the reference vectors. Effective choices for

these functions and their parameters have so far only been

determined experimentally; such default definitions have been used in

this package.

The next step is calibration of the map, in order to be able to locate

images of different input data items on it. In the practical

applications for which such maps are intended, it may be usually

self-evident from daily routines how a particular input data set ought

to be interpreted. By inputting a number of typical, manually

analyzed data sets and looking where the best matches on the map

according to Eq. (1) lie, the map or at least a subset of its nodes

can be labeled to delineate a "coordinate system" or at least a set of

characteristic reference points on it according to their manual

interpretation. Since this mapping is assumed to be continuous along

some hypothetical "elastic surface", it may be self-evident how the

unknown data are interpreted by means of interpolation and

extrapolation with respect to these calibrated points.

3 Practical advices for the construction of good maps

Although it is possible to obtain some kind of maps without taking

into account any precautions, nonetheless it is advisable to pay

attention to the following arguments in order that the resulting

mappings were stable, well oriented, and least ambiguous.

Form of the array: As stated earlier, the hexagonal lattice is to be

preferred for visual inspection. The edges of the array ought to be

rather rectangular than square, because the "elastic network" formed

of the reference vectors mi must be oriented along with p(x) and

stabilize in the learning process. Notice that if the array were,

e.g., circular, it would have no stable orientation in the data space;

so any oblongated form is to be preferred. On the other hand, since

the mi have to approximate to the p(x), it would be desirable to find a

form for the edges of the array the dimensions of which roughly

correspond to the major dimensions of p(x). Therefore, visual

inspection of the rough form of p(x), e.g., by Sammon's mapping

(cf. [Sammon Jr. 1969] and Section 7.4) ought to be done first.

Learning with a small number of available training samples: Since for

a good statistical accuracy the learning process (2) may require an

appreciable number, say, 100'000 steps, and the number of available

samples is usually much smaller, it is obvious that the samples must

be used reiteratively in training. Several alternatives then exist:

the samples may be applied cyclically or in a randomly permuted order,

or picked up at random from the basic set (so-called bootstrap

learning). It has turned out in practice that ordered cyclic

 6

application is not noticeably worse than the other, mathematically

better justifiable methods.

Enhancement of rare cases: It may be obvious from the above that the

SOM in some way tends to represent p(x). However, in many practical

problems there may occur important cases (input data) with small

statistical frequency, whereby they would not get a representation on

the SOM. Therefore, such important cases can be enhanced in learning

by an arbitrary amount by taking a higher value of hcifor these

samples, or repeating these samples in a random order a sufficient

number of times during the learning process. The weight parameters

that correspond to the enhancement may be given in the training data

file, and their determination should be done in cooperation with the

users of these maps (see Section 5.1).

Quality of learning: Very different learning processes can be defined

starting with different initial values mi(0), and applying different

sequences of the training vectors x(t) and different learning

parameters. It is obvious that some optimal map for the same input

data must exist. It may also be obvious that when comparing maps that

have the same "stiffness" (same hci), the best map is expected to

yield the smallest average quantization error because it is then

fitted best to the same data. The average quantization error, or the

mean of ||x - mc|| defined via inputting the training data once again is

then a useful performance index. Therefore, an appreciable number

(say, several tens) of random initializations of the mi(0) ought to be

tried, and the map with the minimum quantization error selected. For

this automatic choice there is a procedure in this package.

Especially with large maps, it is sometimes advisable to select the

"best" SOM by computing a weighted distance measure sum(hci ||x - mi||^2)

where hci is the neighborhood function, and use that value

instead of the quantization error in comparison. This measure is

called the average distortion measure. In this package it is possible

to use either the usual quantization error, or the weighted distance

measure (see Section 7.3) for the selection of the "best" match.

Notice too that there would be no sense in comparing quantization

errors for different hci, because, e.g., it is a trivial fact that the

error is minimum if hci = delta (Kronecker delta). With this kernel,

however, there is no self-organizing power left. In general the

quantization error depends strongly on hci.

Missing input vector components: In many applications, sensor

failures, recording errors and resource limitations can prevent data

collection to complete each input vector. Such incomplete training

examples still contain useful information, however. For example,

partial data can still be used to determine the distribution

statistics of the available vector components. Using the

Self-Organizing Map algorithm one can easily utilize partial training

data [Samad et al. 1992] [Kaski 1995].

For incomplete input data vectors the SOM_PAK has the possibility to

mark

 7

the missing values by a predefined string ('x' by default). The

SOM_PAK routines will compute the distance calculations and

reference vector modification steps using the available data

components.

NOTE: If some specific component is missing in all input data vectors,

the results conserning that component are meaningless. The component

should be removed from the data files.

Scaling of the components: This is a very subtle problem. One may

easily realize that the orientation, or ordered "regression" of the

reference vectors in the input space must depend on the scaling of the

components (or dimensions) of the input data vectors. However, if

the data elements have already been represented in different scales,

there does not exist any simple rule to determine what kind of optimal

rescaling should be used before entering the training data to the

learning algorithm. One may try many heuristically justifiable

rescalings and check the quality of the resulting maps by means of

Sammon's mapping or average quantization errors.

Forcing representations to a wanted place on the map: Sometimes,

especially for monitoring purposes, it may be desirable to map

"normal" data onto specified locations (say, into the middle) of the

map. It is possible to affect the orientation and translation of the

reference vectors in the input space, for instance, by forcing some

"normal" data samples to be mapped to some specified nodes. The fixed

parameters that correspond to specified locations may be given in the

training data file (see Section 5.1).

4 Installation of the program package

In the implementation of the SOM_PAK programs we have tried to use as

simple a code as possible. Therefore the programs are supposed to

compile in various machines without any specific modifications made on

the code. All programs have been written in ANSI C.

The programs included in this basic package have not been provided

with explicit graphics facilities; this makes it possible to run the

programs equally well in all computers ranging from PCs to Cray

supercomputers. The display programs generate lists of coordinates of

points, which can be visualized by any standard graphics program.

4.1 Getting the program code

The latest version of the som_pak-program package is available for

anonymous ftp user at the Internet site cochlea.hut.fi

(130.233.168.48). All programs and this documentation are stored in

the directory /pub/som_pak. The files are in multiple formats to ease

their downloading and compiling.

The directory /pub/som_pak contains the following files:

 8

 README - short description of the som_pak package

 som_doc.ps - this document in c) PostScript format

 som_doc.ps.Z - same as above but compressed

 som_doc.txt - this document in ASCII format

 som_p3r1.exe - self-extracting MS-DOS archive file

 som_pak-3.1.tar - UNIX tape archive file

 som_pak-3.1.tar.Z - same as above but compressed

An example of FTP access is given below

unix> ftp cochlea.hut.fi (or 130.233.168.48)

Name: anonymous

Password: <your email address>

ftp> cd /pub/som_pak

ftp> binary

ftp> get som_pak-3.1.tar.Z

ftp> quit

unix>

4.2 Installation in UNIX

The archive file som_pak-3.1.tar.Z is intended to be used when

installing som_pak in UNIX systems. It needs to be uncompressed to

get the file som_pak-3.1.tar. If your system doesn't support the BSD

compress utility, you may download the uncompressed file directly.

The tar archive contains the source code files, makefiles, and example

data sets of the package, all in one subdirectory called

som_pak-3.1. In order to create the subdirectory and extract all the

files you should use the command tar xovf som_pak-3.1. (The switches

of tar unfortunately vary, so you may need omit the 'o'.)

The package contains a makefile called makefile.unix for compilation

in UNIX systems. Before executing the make command, it

has to be copied to the name makefile. The Makefile is rather

generic and should work as such in most UNIX systems.

We have written the source code for an ANSI standard C compiler and

environment. If the cc compiler of your system doesn't fulfill these

requirements, we recommend you to port the public domain GNU gcc

compiler in your computer. When using gcc, the makefile macro

definition CC=cc has to be changed accordingly to CC=gcc. The makefile

also contains some other platform specific definitions, like

optimizer and linker switches, that may need to

 9

be revised.

In order to summarize, the installation procedure is as follows:

> uncompress som_pak-3.1.tar.Z

> tar xovf som_pak-3.1.tar

> cd som_pak-3.1

> cp makefile.unix makefile

> make

After a successful make of the executables, you may test them by

executing

> make example

which performs the commands as listed in section "6.4 Using the

command lines (an example)".

4.3 Installation in DOS

The archive file som_p3r1.exe is intended to be used when installing

som_pak in MS-DOS computers. It is a self-extracting packed archive

compatible with the public domain lha utility. If your system

supports UNIX tar archiving and compress file compressing utilities,

you may as well use som_pak-3.1.tar and som_pak-3.1.tar.Z archives, as

described in the previous section.

The som_p3r1.exe archive contains the source code files, makefiles,

and example data sets of the package, all in one subdirectory called

som_pak.3r1. In order to create the subdirectory and extract all the

files simply use the command som_p3r1.

The package contains a makefile called makefile.dos for building up

the object files. Before using the make command, makefile.dos has to

be copied to the name makefile. It is intended to be used with the

Borland Make Version 3.6 and the Borland C++ compiler Version 3.1, and

may need to be revised if used with other compilation tools. Even with

Borland C you may want to set some compiler switches, e.g., floating

point options, according to your hardware.

In order to summarize, the installation procedure is as follows:

> som_p3r1

> cd som_pak.3r1

> copy makefile.dos makefile

> make

After a successful make of the executables, you may test them by executing

> make example

which performs the commands as listed in section "6.4 Using the

command lines (an example)".

Some of the more advanced features are not available in DOS Version of

the programs. These include the reading and writing of compressed

files and

 10

usage of piped commands.

4.4 Hardware requirements

The compressed archive files are about 200 kbytes in size, whereas the

extracted files take about 500 kbytes. When compiled and linked in

MS-DOS, the executables are about 65 kbytes each. It is recommended to

have at least 640 kbytes RAM, when using som_pak in MS-DOS. The

execution times of the programs depend heavily on the hardware.

5 File formats

All data files (input vectors and maps) are stored as ASCII files for

their easy editing and checking. The files that contain training data

and test data are formally similar, and can be used interchangeably.

The data and map file formats are similar to the formats used in the

LVQ_PAK program package. Thus the same data files can be used in both

(LVQ_PAK and SOM_PAK) packages.

5.1 Data file format

The input data is stored in ASCII-form as a list of entries, one line

being reserved for each vectorial sample.

The first line of the file is reserved for status knowledge of the

entries; in the present version it is used to define the following

items (these items MUST occur in the indicated order):

 - Dimensionality of the vectors (integer, compulsory).

 - Topology type, either hexa or rect (string, optional, case-sensitive).

 - Map dimension in x-direction (integer, optional).

 - Map dimension in y-direction (integer, optional).

 - Neighborhood type, either bubble or gaussian (string, optional, case-sen-

 sitive).

In data files the optional items are ignored.

Subsequent lines consist of n floating-point numbers followed by an

optional class label (that can be any string) and two optional

qualifiers (see below) that determine the usage of the corresponding

data entry in training programs. The data files can also contain an

arbitrary number of comment lines that begin with '#', and are

ignored. (One '#' for each comment line is needed.)

If some components of some data vectors are missing (due to data

collection failures or any other reason) those components should be

marked with 'x'

 11

(replacing the numerical value). For example, a part of a

5-dimensional data file might look like:

 1.1 2.0 0.5 4.0 5.5

 1.3 6.0 x 2.9 x

 1.9 1.5 0.1 0.3 x

When vector distances are calculated for winner detection and when

codebook vectors are modified, the components marked with x are

ignored.

An example data file: Consider a hypothetical data file exam.dat that

represents shades of colors in a three-component form. This file

contains four samples, each one comprising a three-dimensional data

vector. (The dimensionality of the vectors is given on the first

line.) The labels can be any strings; here 'yellow' and 'red' are the

names of the classes.

 exam.dat:

 3

 # First the yellow entries

 181.0 196.0 17.0 yellow

 251.0 217.0 49.0 yellow

 # Then the red entries

 248.0 119.0 110.0 red

 213.0 64.0 87.0 red

Each data line may have two optional qualifiers that determine the

usage of the data entry during training. The qualifiers are of the

form codeword=value, where spaces are not allowed between the parts of

the qualifier. The optional qualifiers are the following:

 - Enhancement factor: e.g. weight=3. The training rate for the

 corresponding input pattern vector is multiplied by this

 parameter so that the reference vectors are updated as if this

 input vector were repeated 3 times during training (i.e., as if

 the same vector had been stored 2 extra times in the data file).

 - Fixed-point qualifier: e.g. fixed=2,5. The map unit defined by

 the fixed-point coordinates (x = 2; y = 5) is selected instead of

 the best-matching unit for training. (See below for the definition

 of coordinates over the map.) If several inputs are forced to

 known locations, a wanted orientation results in the map.

The optional qualifiers are not used by default; see the definition of

the parameters -fixed and -weights.

 12

5.2 Map file format

The map files are produced by the SOM_PAK programs, and the user

usually does not need to examine them by hand.

The reference vectors are stored in ASCII-form. The format of the

entries is similar to that used in the input data files, except that

the optional items on the first line of data files (topology type, x-

and y-dimensions and neighborhood type) are now compulsory. In map

files it is possible to include several labels for each entry.

An example: The map file code.cod contains a map of three-dimensional

vectors, with three times two map units. This map corresponds to the

training vectors in the exam.dat file.

 code.cod:

 3 hexa 3 2 bubble

 191.105 199.014 21.6269

 215.389 156.693 63.8977

 242.999 111.141 106.704

 241.07 214.011 44.4638

 231.183 140.824 67.8754

 217.914 71.7228 90.2189

The x-coordinates of the map (column numbers) may be thought to range

from 0 to n 1, where n is the x-dimension of the map, and the

y-coordinates (row numbers) from 0 to m 1, respectively, where m is

the y-dimension of the map. The reference vectors of the map are

stored in the map file in the following order:

 1 The unit with coordinates (0; 0).

 2 The unit with coordinates (1; 0).

 ...

 n The unit with coordinates (n 1; 0).

 n + 1 The unit with coordinates (0; 1).

 ...

 nm The last unit is the one with coordinates (n 1; m 1).

 (0,0) - (1,0) - (2,0) - (3,0) (0,0) - (1,0) - (2,0) - (3,0)

 | | | | \ / \ / \ / \

 (0,1) - (1,1) - (2,1) - (3,1) (0,1) - (1,1) - (2,1) - (3,1)

 | | | | / \ / \ / \ /

 (0,2) - (1,2) - (2,2) - (3,2) (0,2) - (1,2) - (2,2) -(3,2)

 Rectangular Hexagonal

 13

In the picture above the locations of the units in the two possible

topological structures are shown. The distance between two units in

the map is computed as an Euclidean distance in the (two dimensional)

map topology.

6 Application of this package

6.1 The searching program vfind

The easiest way to use the som_pak-programs is to run the

vfind-program, which searches for good mappings by automatically

repeating different random initializing and training procedures and

their testing several times. The criterion of a good mapping is a low

quantization error.

The vfind-program asks all the required arguments interactively. The

user only needs to start the program without any parameters (except

that the verbose parameter (-v), the learning rate function type

parameter (-alpha_type), the quantization error type parameter

(-qetype) and the qualifier parameters (-fixed and -weights) can be

given).

6.2 Using the programs directly

Usually the subprograms contained in this package are run separately

and directly from the console using command lines defined in Section

7. The user should take care of that the programs are then run in the

correct order: first initialization, then training, and then tests;

and that the correct parameters are given (correspondence of the

input and output files of subsequent programs is particularly

important).

Each program requires some parameters: file names, learning

parameters, sizes of maps, etc. All these must be given to the program

in the beginning; the programs are not interactive in the sense that

they do not ask for any parameters during their running.

6.3 Program parameters

Various programs need various parameters. All the parameters that are

required by any program in this package are listed below. The

meaning of the parameters is obvious in most cases. The parameters

can be given in any order in the commands.

 -din Name of the input data file.

 -dout Name of the output data file.

 -cin Name of the file from which the reference vectors are read.

 -cout Name of the file to which the reference vectors are stored.

 -rlen Running length (number of steps) in training.

 14

 -alpha Initial learning rate parameter. Decreases linearly to zero during

 training.

 -radius Initial radius of the training area in som-algorithm. Decreases

 linearly to one during training.

 -xdim Number of units in the x-direction.

 -ydim Number of units in the y-direction.

 -topol The topology type used in the map. Possible choices are hexago-

 nal lattice (hexa) and rectangular lattice (rect).

 -neigh The neighborhood function type used. Possible choices are step

 function (bubble) and Gaussian (gaussian).

 -plane The component plane of the reference vectors that is displayed in

 the conversion routines.

 -fixed Defines whether the fixed-point qualifiers are used in the traini ng

 programs. The value one means that fixed-point qualifiers are

 taken into account. Default value is zero.

 -weights Defines whether the weighting qualifiers are used in the training

 programs. The value one means that qualifiers are taken into

 account. Default value is zero.

 -alpha_type The learning rate function type (in vsom and vfind). Possible

 choices are linear function (linear, the default) and inverse-time

 type function (inverse_t). The linear function is defined as alpha(t) =

 alpha(0)(1.0 - t/rlen) and the inverse-time type function as alpha(t) =

 alpha(0)C/(C + t) to compute alpha(t) for an iteration step t. In the

 package the constant C is defined C = rlen/100.0.

 -qetype The quantization error function type (in qerror and vfind). If

 a value greater than zero is given then a weighted quantization

 function is used.

 -version Gives the version number of SOM_PAK.

In addition to these, it is always possible to give the -v n parameter

(verbose parameter), which defines how much diagnostic output the

program will generate. The value of n can range from 0 upwards,

whereby greater values will generate more output; the default value is

1.

 -v Verbose parameter defining the output level.

In most programs it is possible to give the -help 1 parameter, which

lists the required and optional parameters for the program.

 -help Gives a list where the required and optional parameters are

 described.

 15

In the initialization and training programs the random-number

generator is used to select the order of the training samples,

etc. The parameter -rand defines whether a new seed for the random

number generator is given; when any other number than zero is given,

that number is used as the seed, otherwise the seed is read from the

system clock. The default value is zero.

 -rand Parameter that defines whether a new seed for the random-

 number generator is defined.

Some examples of the use of the parameters:

> randinit -xdim 12 -ydim 8 -din exam1.dat -cout code1.map -topol hexa

 -neigh bubble

An initialization program was called above to create a map of 12 times

8 units. The input entries used in the initialization were read from

the file exam1.dat and the map was stored to the file code1.map. The

topology of the map was selected to be hexagonal and the neighborhood

function was step function.

> vsom -din exam1.dat -cin code1.map -cout code1.map -rlen 10000 -alpha

 0.05 -radius 10

A training program was called. The training entries were read from

the file exam1.dat; the map to be trained was read from the file

code1.map and the trained reference vectors were resaved to the same

file code1.map. Training was defined to take 10000 steps, but if there

were fewer entries in the input file, the file was iterated a

sufficient number of times. The initial learning rate was set to 0.05

and the initial radius of the learning "bubble" was set to 10.

> qerror -din exam2.dat -cin code1.map

The quantization error relating to the reference vectors stored in the

map file code1.cod was tested using the test data file exam2.dat.

6.4 Using the command lines (an example)

The example given in this section demonstrates the direct use of

command lines. It is meant for an introduction to the application of

this package, and it may be helpful to study it in detail. (The

example may also be run directly and automatically by the command make

example.)

The data items used in the example stem from practice and describe

measurements taken from a real device. They are contained in this

package and consist of four data sets: ex.dat, ex_fts.dat, ex_ndy.dat

and ex_fdy.dat. The first file (ex.dat) contains 3840 vectorial

samples of the device state measurements and is used for training

the map, while the second file (ex_fts.dat) contains 246 examples of

faulty states of the device and is used for the calibration of the

map. The other two files contain samples collected during 24 hours of

operation of the device. In ex_ndy.dat the samples are from normally

 16

operating device and in ex_fdy.dat from a device that is

overheating. These sample files have been intended to demonstrate how

the map can be used for device monitoring.

Each vector in the files has a dimensionality of 5.

Below, the map is initialized and trained, the quantization error is

evaluated, and the resulting map is visualized.

6.4.1 First stage: Map initialization

The reference vectors of the map are first initialized to tentative

values. The lattice type of the map and the neighborhood function used

in the training procedures are also defined in the initialization.

In the example the map is initialized using random numbers (the seed

for the random number generator is specified with the -rand

parameter). The lattice type is selected to be hexagonal (hexa) and

the neighborhood function type is step function (bubble). The map size

is here 12 times 8 units.

> randinit -din ex.dat -cout ex.cod -xdim 12 -ydim 8 -topol hexa

 -neigh bubble -rand 123

Now the map has been initialized.

6.4.2 Second stage: Map training

The map is trained by the self-organizing map algorithm using the

program vsom.

Training is done in two phases. The first of them is the ordering

phase during which the reference vectors of the map units are

ordered. During the second phase the values of the reference vectors

are fine-tuned.

In the beginning the neighborhood radius is taken almost equal to the

diameter of the map and decreases to one during training, while the

learning rate decreases to zero. (With lininit initialization the

first phase (ordering) can be ignored and only the second phase of

training is needed.)

> vsom -din ex.dat -cin ex.cod -cout ex.cod -rlen 1000 -alpha 0.05

 -radius 10

During the second phase the reference vectors in each unit converge to

their 'correct' values. The second phase is usually longer than the

first one. The learning rate is thereby smaller. The neighborhood

radius is also smaller on the average: in the beginning the units up

to a distance of three are covered. In this example the training time

of the second phase is ten times longer than in the first phase.

> vsom -din ex.dat -cin ex.cod -cout ex.cod -rlen 10000 -alpha 0.02

 -radius 3

After these two phases of training the map is ready to be tested and

to be used in monitoring applications.

 17

6.4.3 Third stage: Evaluation of the quantization error

When the entries in the map have been trained to their final values,

the resulting quantization error can be evaluated. The training file

is used for this purpose. The program qerror is used to evaluate the

average quantization error.

> qerror -din ex.dat -cin ex.cod

This program computes the quantization error over all the samples in

the data file. The average quantization error with the training set in

this example is expected to be 3.57.

6.4.4 Fourth stage: Map visualization

The trained map can now be used for visualization of data samples. In

this package there are visualization programs, which make an image of

the map (actually one selected component plane of it) and plot the

trajectory of the best-matching units vs. time upon it.

Before visualization, the map units are calibrated using known input

data samples. The sample file ex_fts.dat contains labeled samples from

states of an overheating device.

> vcal -din ex_fts.dat -cin ex.cod -cout ex.cod

After calibration some of the units in the map have labels showing an

area in the map which corresponds to fatal states.

The program visual generates a list of coordinates corresponding to

all the best-matching units in the map for each data sample in the

data file. It also returns the quantization errors and the class

labels of the best-matching units, if the latter have been

defined. The list of coordinates can then be processed for various

graphical outputs.

The data file ex_ndy.dat contains samples collected during 24 hours

from a device operating normally. The data file ex_fdy.dat contains

samples collected during 24 hours from a device that has overheating

problems during the day.

> visual -din ex_ndy.dat -cin ex.cod -dout ex.nvs

> visual -din ex_fdy.dat -cin ex.cod -dout ex.fvs

The program visual stores the three-dimensional image points

(coordinate values of the responses and the quantization errors) in a

similar fashion as the input data entries are stored.

The package also includes program planes to convert the map planes to

encapsulated postscript (eps) images and program umat to compute so

called u-matrix visualization [Ultsch, 1993] of the SOM reference

vectors and to convert it to encapsulated postscript (eps) image.

 18

7 Description of the programs of this pack-

 age

7.1 Initialization programs

The initialization programs initialize the reference vectors.

 - randinit - This program initializes the reference vectors to

 random values. The vector components are set to random values

 that are evenly distributed in the area of corresponding data

 vector components. The size of the map is given by defining the

 x-dimension (-xdim) and the y-dimension (-ydim) of the map. The

 topology of the map is defined with option (-topol) and is either

 hexagonal (hexa) or rectangular (rect). The neighborhood function

 is defined with option (-neigh) and is either step function

 (bubble) or Gaussian (gaussian).

 > randinit -xdim 16 -ydim 12 -din file.dat -cout file.cod -neigh

 bubble -topol hexa

 - lininit - This program initializes the reference vectors in an

 orderly fashion along a two-dimensional subspace spanned by the

 two principal eigenvectors of the input data vectors.

 > lininit -xdim 16 -ydim 12 -din file.dat -cout file.cod -neigh

 bubble -topol hexa

7.2 Training programs

 - vsom - This program trains the reference vectors using the

 self-organizing map algorithm. The topology type and the

 neighborhood function defined in the initialization phase are

 used throughout the training. The program finds the best-matching

 unit for each input sample vector and updates those units in the

 neighborhood of it according to the selected neighborhood

 function.

 The initial value of the learning rate is defined and will

 decrease linearly to zero by the end of training. The initial

 value of the neighborhood radius is also defined and it will

 decrease linearly to one during training (in the end only the

 nearest neighbors are trained). If the qualifier parameters

 (-fixed and -weight) are given a value greater than zero, the

 corresponding definitions in the pattern vector file are used.

 The learning rate function ff can be defined using the option

 -alpha_type. Possible choices are linear and inverse_t. The

 linear function is defined as alpha(t) = alpha(0)(1.0 - t/rlen) and the

 inverse-time type function as alpha(t) = alpha(0)C/(C + t) to compute

 alpha(t) for an iteration step t. In the package the constant C is

 defined C = rlen/100.0.

 19

 > vsom -din file.dat -cin file1.cod -cout file2.cod -rlen 10000

 -alpha 0.03 -radius 10 [-fixed 1] [-weights 1] [-alpha_type

 linear] [-snapinterval 200] [-snapfile file.snap]

 Notice that the degree of forcing data into specified map units

 can be controlled by alternating "fixed" and "nonfixed" training

 cycles.

7.3 Quantization accuracy program

 - qerror - The average quantization error is evaluated. For each

 input sample vector the best-matching unit in the map is searched

 for and the average of the respective quantization errors is

 returned.

 > qerror -din file.dat -cin file.cod [-qetype 1] [radius 2]

 It is possible to compute a weighted quantization error

 sum(hci ||x - mi||^2)

 for each input sample and average these over the data

 files. If option -qetype is given a value greater than zero,

 then a weighted quantization error is used. Option -radius can

 be used to define the neighborhood radius for the weighting,

 default value for that is 1.0.

7.4 Monitoring programs

 - visual - This program generates a list of coordinates

 corresponding to the best-matching unit in the map for each data

 sample in the data file. It also gives the individual quantization

 errors made and the class labels of the best matching units if the

 latter have been defined. The program will store the

 three-dimensional image points (coordinate values and the

 quantization error) in a similar fashion as the input data entries

 are stored. If a input vector consists of missing components

 only, the program will skip the vector. If option -noskip is

 given the program will indicate the existence of such line by

 saving line '-1 -1 -.0 EMPTY_LINE' as a result.

 > visual -din file.dat -cin file.cod -dout file.vis [-noskip 1]

 - sammon - Generates the Sammon mapping [Sammon Jr. 1969] from n-

 dimensional input vectors to 2-dimensional points on a plane

 whereby the distances between the image vectors tend to

 approximate to Euclidean distances of the input vectors. If

 option -eps is given an encapsulated postscript image of the

 result is produced. Name of the eps-file is generated by using the

 output file basename (up to the last dot in the name) and adding

 the ending _sa.eps to the output filename. If option -ps is given

 a postscript image of the result is produced. Name of the ps-file

 is generated by using the output file basename (up to the last dot

 in the name) and adding the ending _sa.ps to the output filename.

 20

 In the following example, if the option -eps 1 is given, an eps

 file named file_sa.eps is generated.

 > sammon -cin file.cod -cout file.sam -rlen 100 [-eps 1] [-ps 1]

 - planes - This program generates an encapsulated postscript (eps)

 code from one selected component plane (specified by the parameter

 -plane) of the map imaging the values of the components using gray

 levels. If the parameter given is zero, then all planes are

 converted. If the input data file is also given, the trajectory

 formed of the best-matching units is also converted to a separate

 file. The eps files are named using the map basename (up to the

 last dot in the name) and adding _px.eps (where x is replaced by

 the plane index, starting from one) to it. The trajectory file is

 named accordingly adding _tr.eps to the basename. If the -ps

 option is given a postscript code is generated instead and the

 produced files are named replacing .eps by .ps.

 In the following example a file named file_p1.eps is generated

 containing the plane image. If the -din option is given, another

 file file_tr.eps is generated containing the trajectory. If the

 -ps option is given then the produced file is named file_1.ps.

 > planes -cin file.cod [-plane 1] [-din file.dat] [-ps 1]

 - umat - This program generates an encapsulated postscript (eps)

 code to visualize the distances between reference vectors of

 neighboring map units using gray levels. The display method has

 been described in [Ultsch, 1993] [Iivarinen et al., 1994]

 [Kraaijveld et al., 1992]. The eps file is named using the map

 basename (up to the last dot in the name) and adding .eps to it.

 If the -average option is given the grey levels of the

 image are spatially filtered by averaging, and if the -median

 option is given median filtering is used. If the -ps option is

 given a postscript code is generated instead and .ps ending in

 filename is used.

 In the following example a file named file.eps is generated

 containing the image.

 > umat -cin file.cod [-average 1] [-median 1] [-ps

 1]

7.5 Other programs

 - vcal - This program labels the map units according to the

 samples in the input data file. The best-matching unit in the map

 corresponding to each data vector is searched for. The map units

 are then labeled according to the majority of labels 'hitting' a

 particular map unit. The units that get no 'hits' are left

 unlabeled. Giving the option -numlabs

 21

 one can select the maximum number of labels saved for each

 codebook vector. Default value is one.

 > vcal -din file.dat -cin file.cod -cout file.cod [-numlabs 2]

8 Advanced features

Some more advanced features has been added into the SOM_PAK program

package in Version 3.0. These features are intended to ease the usage

of the package by offering ways to use e.g. compressed data files

directly and to save snapshots of the map during the training run.

The advanced features include:

 - Buffered loading (the whole data file need not be loaded into

 memory at once)

 - Reading and writing of:

 - compressed files

 - stdin/stdout

 - piped command

 - Snapshots of the codebook during teaching

 - Environment variables

Buffered loading

This means that the whole data set doesn't have to be loaded in memory

all the time. SOM_PAK can be set, for example, to hold max 10000 lines

of data in memory at a time. When the 10000 data vectors have been

used, the next 10000 data vectors are loaded over the old ones. The

buffered reading is transparent to the user and it works also with

compressed files.

Note that when the whole file has been read once and we want to reread

it, the file has to be rewound (for regular files) or the

uncompressing command has to be rerun. This is done automatically and

the user need not to worry about it, but some restrictions are

enforced on the input file: If the source is a pipe, it can't be

rewound. Regular files, compressed files and standard input (if it is

a file) work. Pipes work fine if you don't have to rewind them,

ie. there is no end in the data, or the number of iterations is

smaller than the number of data vectors.

 -buffer Defines the number of lines of input data file that are read

 at a time.

 22

Most programs support the buffered reading of data files. It is

activated with the command line option -buffer followed with the

maximum number of data vectors to be kept in memory. For example, to

read the input data file 10000 lines at a time one uses:

> vsom -buffer 10000 ...

Reading and writing compressed files

To read or write compressed files just put the suffix .gz at the end

of the filename. The file is automatically uncompressed or compressed

as the file is being read or written. SOM_PAK uses 'gzip' for

compressing and uncompressing. It can also read files compressed

with regular UNIX compress-command. The commands used for compressing

and decompressing can be changed with command line options or at

compile time.

Example: with vsom, to use a compressed data file for teaching:

> vsom -din data.dat.gz ...

Reading and writing stdin/stdout

To use standard input or output, use the minus sign ('-') as a

filename. Data is then read from stdin and written to stdout. For

example, to read training data from stdin with vsom:

> vsom -din - ...

Reading and writing piped commands

If you use a filename that starts with the UNIX pipe character ('|'),

the filename is executed as a command. If the file is opened for

writing the output of the SOM command is piped to the command as

standard input. Likewise, when the file is opened for reading the

output of the command is read by the SOM programs.

For example:

> vsom -cin "|randinit ... " ...

would start the program randinit when it wants to read the initial

codebook. However, the same thing could be done with:

> randinit ... |som -cin - ...

Snapshots

Saves snapshots of the codebook during training (in vsom program).

 -snapinterval Interval between snapshots (in iterations).

 -snapfile Name of the snapfile. If the name given contains

 string '%d', the number of iterations taken so

 far is included to the filename.

The interval between snapshots is specified with the option

-snapinterval. The snapshot filename can be specified with the option

-snapfile. If no filename is given, the name of the output code file

is used. The filename is actually passed to 'sprintf(3)' as the

format string and the number of iterations so far is passed as the

next argument. For example:

 23

> vsom -snapinterval 10000 -snapfile "ex.%d.cod" ...

gives you snapshots files every 10000 iterations with names starting

with: ex.10000.cod, ex.20000.cod, ex.30000.cod, etc.

Environmental variables

Some defaults can be set with environment variables:

LVQSOM_COMPRESS_COMMAND Defines the command used to compress

 files. Default: "gzip -9 -c >%s"

LVQSOM_UNCOMPRESS_COMMAND Defines the command used to decom-

 press files. Default: "gzip -d -c %s"

LVQSOM_MASK_STR Defines the string which is used to replace missing

in-

 put vector components. Default: "x"

Other new options

 -mask_str Defines the string which is used to replace missing input

 vector components.

 -compress_cmd Defines the compress command.

 -uncompress_cmd Defines the uncompress command.

 -numlabs Defines the maximum number of labels a codebook entry

 can have(in vcal).

 -noskip Do not skip those entries where there are only missing

 components (in visual).

 -average Filter the u-matrix image using averaging (in umat).

 -median Filter the u-matrix image using median filtering (in umat).

 -eps Generate encapsulated postscript code (in sammon).

 -ps Generate postscript code (instead of encapsulated

 postscript) (in umat, planes and sammon).

By default the components of the data vectors that are marked with 'x'

are ignored. This string can be changed with the -mask_str option. For

example,

> vsom -mask_str "MIS" ...

would ignore components thats are marked with string 'MIS' instead of

'x'. The string is case insensitive.

The command used to compress files can be changed by giving the option

- compress_cmd. Similarly the uncompress command can be changed by

giving the option -uncompress_cmd.

 24

The vcal program can give several labels to each codebook entry. Using

the option -numlabs one can restrict the number of labels. Default

value is to use at most one label per code.

When input data has been automatically collected, it is possible that

some vector components are missing. In extreme cases it is even

possible that all components are missing (i.e. there are no numerical

values left). These data vectors are not usable in training programs,

but for visualization they might be useful for example to mark time

steps where the collection has been unfunctional. In visual program

the default behaviour is to skip the empty entries, but they can be

included into the visual result file by giving an option -noskip. The

resulting line would look out as '-1 -1 -1.0 EMPTY_LINE'.

9 Comments on and experiences of the use

 of this package

Comments on and experiences of the installation and use of these

programs are welcome, and may be sent to the e-mail address

som@cochlea.hut.fi.

9.1 Changes in the package

No changes to the central algorithms have been made. The following are

the details that have been changed from the Version 1.0:

 1. Those who have already used the Gaussian kernel, Eq. (3), in

 Version 1.0 may have noticed that the learning rate in the

 beginning has been rather small. From Version 1.1 on we have now

 revised Eq. (3) into the form in which it has originally appeared

 in publications. Anyway it will be necessary to use parameter

 values that are different from the 'bubble' case, and must be found

 experimentally. We recommend that for comparison, the 'bubble'

 kernel should always be tried first, and in the examples we have

 given recommendable parameter values for it.

 2. The function 'strdup' that was used in some functions is not

 included in the ANSI C standard. From Version 1.2 on we have

 written a new function 'ostrdup' that is functionally equivalent to

 'strdup' and is used throughout the program code.

 3. There was an error in the function 'hexa_dist' that introduced a

 small 'random' factor in the distance calculation. That error has

 now been corrected.

 4. In Version 3.0 it is possible to have missing components in

 input data vectors.

 5. In Version 3.0 it is possible to use a weighted quantization

 function.

 25

 6. In Version 3.0 it is possible to use an inverse function as a

 learning rate

 function alpha(t).

 7. In Version 3.0 it is possible to read the input data files in

 pieces, i.e. to

 have only a portion of the whole data in main memory at a

 time. This will enable using the SOM_PAK programs in PC-machines

 with large data files.

 8. In version 3.0 there are several new 'advanced' features to allow

 reading

 and writing of compressed files, stdin and stdout, and piped

 commands.

 9. In version 3.0 it is now possible to save 'snapshots' of the state

 of codebook during training.

 10. The only change made to Version 3.1 was a bug fix in the

 random ordering of data

 26

References

[Erwin et al. 1992] Ed Erwin, Klaus Obermayer, Klaus Schulten. Self-

 organizing maps: Ordering, convergence properties

 and energy functions. Biological Cybernetics,

 67(1):47-55, 1992.

[Iivarinen et al., 1994] J. Iivarinen, T. Kohonen, J. Kangas, S. Kaski

 Visualizing the clusters on the self-organizing

 map. Multiple Paradigms for Artificial

 Intelligence (SteP94), 122-126. Finnish

 Artificial Intelligence Society, 1994.

[Kaski 1995] Sami Kaski, Teuvo Kohonen. Structures of Welfare and

 Poverty in the World Discovered by the

 Self-Organizing Map. Report A24, Helsinki

 University of Technology, Laboratory of Computer

 and Information Technology, 1995.

[Kohonen 1989] Teuvo Kohonen. Self-Organization and Associative Mem-

 ory. Springer-Verlag, Berlin-Heidelberg-New

 York-Tokio, 3 edition, 1989.

[Kohonen 1990] Teuvo Kohonen. The self-organizing map. Proceedings of

 the IEEE, 78(9):1464-1480, 1990.

[Kohonen 1991] Teuvo Kohonen. Self-organizing maps: Optimization ap-

 proaches. In Proceedings of the International

 Conference on Artificial Neural Networks, pages

 981-990, Espoo, Finland, June 1991.

[Kohonen 1995] Teuvo Kohonen. Self-Organizing Maps. Springer-Verlag,

 Heidelberg, 1995.

[Kraaijveld et al., 1992] M. A. Kraaijveld, J. Mao, A. K. Jain.

 A non-linear

 projection method based on Kohonen's topology

 preserving maps. Proceedings of the 11th

 International Conference on Pattern Recognition

 (11ICPR), 41-45, Los Alamitos, CA. IEEE

 Comput. Soc. Press, 1992.

[Luttrell 1989] S. Luttrell. Self-organization: a derivation from

 first prin ciples of a class of learning algorithms.

 In Proceedings of International Joint Conference on

 Neural Networks, pages II-495-498, Washington,

 D.C., 1989.

[Ritter et al. 1988] H. Ritter, K. Schulten. Kohonen self-organizing

 maps: exploring their computational capabilities. In

 Proceedings of IEEE International Conference on

 Neural Networks, pages 109-116, San Diego,

 California, July 1988.

 27

[Samad et al. 1992] T. Samad, S. A. Harp. Self-organization with

 partial data. Network: Computation in Neural

 Systems, 3(2):205-212, 1992.

[Sammon Jr. 1969] John W. Sammon Jr. A nonlinear mapping for data

 structure analysis. IEEE Transactions on

 Computers, C-18(5):401-409, May 1969.

[Ultsch, 1993] A. Ultsch. Self organized feature maps for monitoring

 and knowledge aquisition of a chemical

 process. S. Gielen, B. Kappen, editors,

 Proceedings of the International Conference on

 Artificial Neural Networks (ICANN93), 864-867,

 London. Springer-Verlag, 1993

 28
