Defeating Mastermind

By Justin Dowell MATH 3210

Overview

- What is Mastermind?
- Sample Game
- Algorithms in General
- The First Guess and Optimization
- Specific Algorithms
- Games as a Whole
- Review
- Future Work

What is Mastermind?

- A code-breaking game for two players,
 Codemaster and Codebreaker
- Played on a board with eight rows of four holes; the guessing space for the Codebreaker
- One extra row shielded from Codebreaker keeps Codemaster's hidden code
- Code & Guesses are made with four pegs
- Pegs can be any of any six colors

What is Mastermind?

- To the side of the guessing rows, Codemaster's reply section exists. Also four holes.
- Replies are given with 'keys':
 - Black key for a correct color peg in correct place
 - White keys for a correct color peg in wrong place
 - No key for an incorrect color peg
- Codebreaker's goal is to crack Codemaster's code before running out of room.

Sample Game: The Board

Hidden Code

Guess 8

Guess 7

Guess 6

Guess 5

Guess 4

Guess 3

Guess 2

Guess 1

Reply to Guess 8

Reply to Guess 7

Reply to Guess 6

Reply to Guess 5

Reply to Guess 4

Reply to Guess 3

Reply to Guess 2

Reply to Guess 1

 Prior to the first turn, the Codemaster sets up hidden code, ROYY

- Codebreaker's guess: RRBB
- Reply: 1 Black, 0 White
- So there's a red or blue in the code, but only one. "Which one is it?", Codebreaker wonders.

- Codebreaker's guess: GGBB
- Reply: 0 Black, 0 White
- So there are no greens or blues in the code. That also means there's one red, based on the first guess.
 "Which place is it in?", Codebreaker wonders.

- Codebreaker's guess: ROOO
- Reply: 2 Black, 0 White
- "Now I know the red peg is first, and there's one orange peg in the code. Where does the orange peg go, though?"

- Codebreaker's guess: OROO
- Reply: 0 Black, 2 White
- When the correct orange is moved, it will earn a white peg.
- The Codebreaker moves the known red peg out of place, and finds the correct orange.

G1

HC

G8

G7

G₆

G5

G4

G3

G1

- Codebreaker's guess: ROPP
- Reply: 2 Black, 0 White
- The Codebreaker tries to learn the color of the remaining two pegs. Only violet and yellow remain.
- ...And after this guess, only yellow. "The code is ROYY."

- Codebreaker's guess: ROYY
- Reply: 4 Black, 0 White
- The Codebreaker wins.
- It was lucky the orange was found fast.
- It was also a good thing the last two pegs weren't different colors, or it could have gone all the way to the last move.

Sample Game: What if ...?

- It could have been a close call.
- Surely there's some way for a computer to figure out good guesses?

Algorithms in General

- All algorithms for suggesting a 'best' Mastermind guess operate using similar principles.
- For each possible guess:
 - For each code that could still be the hidden code:
 - Calculate what the reply would be if this guess was guessed and this code was actually the hidden code.
 - Tally how many times each reply appears.
 - Rate the guess based on an algorithm-specific statistic about the different tallies.
 - If it's better than the last guess, keep it!

- Using brute force, the best first guess can be very expensive to calculate.
- 6⁴ Guesses * 6⁴ Codes = 1296² Replies
- That's 1679616 replies to check! Larger games get even more expensive.
- How can this be improved?

- As far as judging the worth of the first move, there isn't any statistical difference between one color to the next.
 - (RRRR = GGGG)
- Position doesn't really matter either.
 - (RROO = OORR, VVBY = VBYV)
- Only the unique patterns make any difference.
- What is actually obtained is based on the individual game, but the statistical worth of some guesses is identical before guessing.

- Color and position don't matter...
- ...So there are really only 5 first guesses.
 - 'AAAA' (RRRR, OOOO, etc.)
 - 'AAAB' (RRRO, YYBY, etc.)
 - 'AABB' (RROO, VGGV, etc.)
 - 'AABC' (RROY, BBOR, etc.)
 - 'ABCD' (ROYG, GYRO, etc.)

Guess		AAAA	AAAB	AABB	AABC	ABCD
	(0, 0)	625	256	256	81	16
	(0, 1)	0	308	256	276	152
	(0, 2)	0	61	96	222	312
Reply tallies	(0, 3)	0	0	16	44	136
	(0, 4)	0	0	1	2	9
	(1, 0)	500	317	256	182	108
Re	(1, 1)	0	156	208	230	252
	(1, 2)	0	27	36	84	132
	(1, 3)	0	0	0	4	8
	(2, 0)	150	123	114	105	96
	(2, 1)	0	24	32	40	48
	(2, 2)	0	3	4	5	6
	(3, 0)	20	20	20	20	20
	(4, 0)	1	1	1	1	1

- MiniMax (Knuth 1977)
 - Bases value of a guess on the largest reply tally, with larger being worse.
 - In other words, the guess that does the best job in the worst case (pessimistic).
 - 5 turn maximum to solve the code.
 - High average number of turns.

- MaxEnt (Bestavros and Belal 1986)
 - Bases value of a guess on Shannon Entropy.
 - Looks for maximum possible probable loss (in bits of information) of remaining hidden codes.
 - Maximum 6 turns.
 - Lower average than MiniMax.

- Irving (Irving 1979)
 - Bases value of a guess on expected size of remaining hidden codes.
 - Squares the size of a reply tally, multiplies by probability of getting that reply, and summates for all replies.
 - Maximum 6 turns.
 - Lower average than MiniMax.

- MaxParts (Kooi 2005)
 - Bases value of a guess on number of different replies possible.
 - Very simple, does surprisingly well.
 - Maximum 6 turns.
 - Lower average than most other algorithms.
 - First guess is 'lucky' (AABC instead of ABCD).

- WideDev (Dowell 2009)
 - Bases value of a guess on number of different replies possible, then lowest standard deviation of tallies.
 - Maximum 6 turns.
 - Lower average than most other algorithms.
 - Suprisingly, does worse than MaxParts, but is more 'stable'.

- LongRect (Dowell 2009)
 - Bases value of a guess on number of different replies possible, then the largest reply tally, with larger reply tallies being worse.
 - MaxParts + MiniMax.
 - Maximum 6 turns.
 - Lower average than most other algorithms.
 - Like MinDev, does worse than MaxParts, but is more 'stable'.

Games as a Whole

- To obtain statistics for how well an algorithm performs overall, it is necessary to run the algorithm to the end for each and every hidden code.
- The number of turns for each game is recorded, and statistics can be derived.

Games as a Whole

The algorithms in comparison:

Algorithm Name	#Guesses	Mean	StdDev	Max Turns
MiniMax	5778	4.458	0.607	5
MaxEnt	5723	4.416	0.631	6
Irving	5696	4.395	0.619	6
MaxParts	5668	4.373	0.649	6
WideDev	5685	4.387	0.627	6
LongRect	5681	4.383	0.623	6
OptDepth	????	4.341	?	5
OptMean	????	4.340	?	6

Review

- What is Mastermind?
- Sample Game
- Algorithms in General
- The First Guess and Optimization
- Specific Algorithms
- Games as a Whole

Future Work

- Score-based algorithm (based on black and white keys most probably received).
- Genetic Algorithm to solve the code.
- Checking more than one move ahead.
- Algorithm that combines all possible measurements and alters coefficients to converge on optimal strategy.
- The big question: Can optimal guesses be found without looking all the way through the game?

References

- •Knuth, D.E. (1976). The computer as Mastermind, *Journal of Recreational Mathematics*, 9(1), 1–6.
- •Irving, R.W. (1978-79). Towards an optimum Mastermind strategy, *Journal of Recreational Mathematics*, 11(2), 81–87.
- •Koyama, K., and Lai, T.W. (1993). An optimal Mastermind strategy, *Journal of Recreational Mathematics*, 25, 251–256.
- •Bestavros, A., and Belal, A., (1986). MasterMind: A Game of Diagnostic Strategies, *Bulletin of the Faculty of Engineering*, Alexandria University, Alexandria, Egypt.
- •Heeffer, A., and Heeffer, H., (2007). NEAR-OPTIMAL STRATEGIES FOR THE GAME OF LOGIK, *ICGA Journal*. doi: 10.1.1.71.9209
- •Kooi, B., (2005). Yet another mastermind strategy, *ICGA Journal*, 28(1), 13–20.

Questions?

The End!