
I. Executive Summary 
 
II. Problem Description 
It’s very difficult to make a judgment that a classification algorithm is better than another 
because it may work well in a certain data environment, but worse in others. Evaluation 
on performance of a classification algorithm is usually on its accuracy. However, other 
factors, such as computational time or space are also considered to have a full picture of 
each algorithm. This project will evaluate performance of various classification 
techniques on three different data environment, which are noisy, un-noisy, and 
computational-intensive. 
Classification technique can be classified into five categories, which are based on 
different mathematical concepts. These categories are statistical-based, distance-based, 
decision tree-based, neural network-based, and rule-based. Each category consists of 
several algorithms, but the most popular from each category will be used and compared 
on 3 different classification tasks. The algorithms are C4.5, Naïve Bayes, K-Nearest 
Neighbors, and Backpropagation Neural Network. 
There are three data environments that are being studied in this project. One of them is 
the Iris dataset, which consists of relatively clear distinction of the three Iris classes. The 
second dataset is Diabetes, which has a very noisy data environment or unclear 
distinction of the classes. The last data environment is Spambase, which is a real-world 
dataset used by many company to classify an email as either Spam or Not Spam. This 
dataset is used to compare the practical usage of each algorithms being studied. 
 
III. Analysis Technique 
Classification is one of several major tasks in data mining. It is a predictive process 
where prediction about values of data is made using known results found from different 
data. In a typical classification task, there are two main steps: generating a data model, 
and predicting data values using that model. A formal description of a classification task 
is as below: 

 
Given a training data {(t1, c), (t2, c),…, (tn, c)}, a classifier CTh →: is produced 
and used to map an instance Tt∈ to its classification label Cc∈ . 

 
Although the second step actually does the classification, most research has been on step 
1, where a data model is being generated using a mathematical-base algorithm. Decision 
tree and Naïve Bayes are examples of such. Classification algorithms can be categorized 
into 5 groups: statistical-based, distance-based, decision tree-based, neural network-
based, and rule-based. A brief description of each category is below: 

 
Statistical-based algorithms create statistical descriptions about data to make 
predictions. Statistical descriptions include mean, standard deviation, regression, 
probability, etc…  
Distance-based algorithms consider the data model as a vector space and map the 
input data to the class of the data instance in the model that is “similar” to it. An 
example of “similarity” is the Euclidian distance between the input vector and a 
vector in the population space.  



Decision tree-based algorithms create a classification tree to model the 
classification process. The process starts at the root of the tree, goes down to the 
appropriate branch according to the data’s value, and stops at the leaf of three, 
where its class can be determined.  
Neural network-based algorithms model the classification network similar to that 
of a human brain. An input data is run through the network, and output(s) is 
produced that can determined the input’s class. 
Rules-based algorithms typically derive from a decision tree or a neural network. 
The idea is to interpret the graphical model into rules that can be used more easily 
to classify data. In this project, rule-based approach is considered to be as a 
decision-tree approach, thus their performance is similar. 

 
Each of these five categories consists of many algorithms. However, only four of the 
most popular and useful algorithms are being studied. They are Naïve Bayes, K-Nearest 
Neighbors, C4.5, and Backpropagation Neural Network. These algorithms and their 
concepts are discussed next. 
1. Algorithms 
a) Naïve Bayes Classifier: 
The idea behind Naïve Bayes algorithm is the posterior probability of a data instance ti in 
a class cj of the data model. The posterior probability P(ti | cj) is the possibility of that ti 
can be labeled cj. P(ti | cj) can be calculated by multiply all probabilities of all attributes 
of the data instance in the data model: 
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with p denoted as the number of attributes in each data instance. The posterior probability 
is calculated for all classes, and the class with the highest probability will be the 
instance’s label. 
As we can see in the calculation formula of posterior probability, the algorithm is 
designed for categorical data. This is one disadvantage in Naïve Bayes. However, there is 
a way to overcome this problem where continuous data is divided into ranges. Then the 
probability of a value is considered the range’s probability. The program used in this 
project divides continuous data into range with a predefined number of values. For 
example, in the Iris dataset, each attribute is divided into 3 ranges: the first range with 
lower bound and upper bound consists of the first 41 instances of Iris, the second range 
with lower bound and upper bound consists of the next 40 instances of Iris, and the third 
range with lower bound and upper bound consists of the last 39 instances of Iris. 
Naïve Bayes is chosen as a representative of statistical-based category because it works 
very well in a non-linear problem domain. A non-linear problem occurs when the 
model’s classes can not be divided linearly, just as demonstrated in Figure 1. 



 
Figure 1: Nonlinear data space 

b) K-Nearest Neighbors 
How K-Nearest Neighbors works is very simple: finding the K nearest neighbors to an 
input instance in the population space and assign the instance to the class the majority of 
these neighbors belong to. The “nearest” measurement refers to the Euclidean distance 
between two instances. For example, the Euclidean distance between ti and tj is 

D(ti, tj) = ∑
=

−
p

k
jkik xx

1

2)(  

with p denoted as the number of attributes in each data instance. Since the class 
assignment is based on the majority, K must be odd to avoid situation when there is an 
equal number of each class. Besides, the value of K must be greater than the number of 
classes in the problem.  
 
c) C4.5 
C4.5 is the most popular and the most efficient algorithm in Decision tree-based 
approach. A Decision tree algorithm creates a tree model by using values of only one 
attribute at a time. At first, the algorithm sorts the dataset on the attribute’s value. Then it 
look for regions in the dataset that clearly contain only one class and mark those regions 
as leaves. For the remaining regions that have more than one classes, the algorithm 
choose another attribute and continue the branching process with only the number of 
instances in those regions until it produces all leaves or there is no attribute that can be 
used to produce one or more leaves in the conflicted regions.  
Some effective decision tree algorithms choose which attribute to make the partitions by 
calculating the information gain for each attribute. The gain is calculated by subtracting 
the entropy of the attribute from the entire dataset entropy. The entropy measure the 
amount of disorder in a set of values. One disadvantage of calculating an attribute’s 
entropy is that it relates to categorical data. However, just like in Naïve Bayes, this can be 
overcome by dividing continuous data into ranges. The entropy of an attribute is then 
determined by firstly calculating the entropy in each range 

H(range, attribute) = ∑ p(classj | range) x log [p(classj | range)] 
(Where p(classi | range) is the probability of each class appearing in the calculated range) 



 
The entropy of the entire attribute is determined as following: 

H(attribute) = ∑ p(rangei) x H(rangei, attribute) 
(p(rangei) is the probability of an attribute’s range in the entire dataset) 

The information gain of that attribute is then: 
Gain(attribute, dataset) = H(dataset) – H(attribute) 

with H(dataset) = ∑ p(classj | dataset) x log [p(classj | dataset)] 
(p(classj) is the probability of class j in the entire dataset) 

 
C4.5 makes a step further over other algorithms by taking into account the cardinality of 
each range to avoid overfitting of training data. Overfitting happens when the data model 
adapts so well to the training dataset so that the test set suffers high error rate. C4.5 uses 
the GainRatio instead of information Gain, as below: 
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Another advantage of C4.5 is tree pruning. There are two pruning strategies: 
• Replace a subtree by a leaf node if the replacement results in an error rate close to 

that of the original tree 
• Replace the subtree by its most used subtree within a certain increase in error rate. 
 

d) Backpropagation Neural Network: 
Neural networks are created from the idea of the human brain. A typical neural network 
consists of, though much smaller, a number of processing units called nodes. A node is 
connected with other nodes via links, each of which is associated with a weight. Nodes 
are arranged into layers (one input layer, one or more hidden layers, and one output 
layer). The input layer typically has the same number of nodes as the number of attribute 
each data instance and the output layer has the same number of nodes as the number of 
classes. 
Each node consists of 2 elements: an adder and an activation function. The adder 
calculate the net input to the node 
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and the activation function produces the node output 
yk = f(netk) 

There are many forms of activation function. The activation used in this project it the 
Sigmoid Function: 
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The neural network used in this project is a feed-forward network, meaning that it accepts 
the inputs at the input layer, forwards them to all other later layers, and finally produces 
outputs at the output layer. Then the node with the highest value will be the instance’s 
class.  



Just like a human neural network, a neural network learns from experience or through 
training. The back-propagation network used in this project suggest that after the network 
produces an output in the training process, the learning is running backward by adjusting 
the weights for all links from outputs layers back to the input layers sequentially. The 
new weight of each links is calculated as below: 

w ji (t + 1)  = w ji (t) + ∆wji(t) 
with  

wji(t), w ji (t + 1): the weights from node i to node j at time step t and time t + 1. 
∆wji(t): the weight adjustment from time step t to time t + 1. 

 
The weight adjusting uses the delta rule or Widrow-Hoff rule. The rule suggests that 

the adjustment ∆wji(t) is defined by: 
∆wji(t) = η . ej(t) . f ’(net). xi       (Kantardzic, 2003) 

at the output nodes with: 
 η: the learning rate (determined experimentally) 
 ej(t) = dj(t) – yj(t) 
  dj(t): the desired output of node k at step t 
  yj(t): the actual output of node k at step t 
 f ’: the derivative of the activation function 
 xi : the input from node i in the previous layer. 

Let )(tjδ = ej(t) . f ’(net), then ∆wji(t) can be written as:  
∆wji(t) = η . )(tjδ . xi             (Kantardzic, 2003) 

At the hidden layers, the weights are adjusted by substituting )(tjδ  with: 

)(tjδ = f ’(net) . ∑ )(tkδ . wkj(t), k ∈ D         (Kantardzic, 2003) 
(D denotes the set of all nodes in the next layer) 

 
2. Performance evaluation: 
Evaluating a classification technique is a fuzzy problem. However, in this project, the 
algorithms’ performance is measured by the accuracy of the classification. This is 
considered in three different data environment. In addition, the computational overhead 
of each algorithm is also evaluated. 
 
3. Dataset: 
There are three datasets in this project: 

The first dataset is the Iris dataset. The training set includes 120 instances, each of 
which has four attributes (see appendix) and can be classified as either Virginica, or 
Setosa or Versicolor. The test set includes 30 instances of Iris. The training set contains 
relatively clear classification of Iris. In order word, there is a very high correlation 
between each attributes and the classification. 

  
 Sepal Length Sepal Width Petal Length Petal Width 
Correlation 0.793135 -0.41549 0.951772 0.964047 

 
The second dataset is the Diabetes dataset. The training set includes 291 people, 

each of whom has eight attributes (see appendix) and can be classified as either Healthy 



or Sick. The test set includes information about 45 people. This dataset contains very 
noisy data. The correlation between each attribute and the classification is very low. 
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The last dataset contains information about email that can be classified as Spam 
or not Spam. This experiment models a real world situation to test not only the accuracy 
of the algorithm, but also their computational overheads. The training set contains 4101 
instances, each of which contains 57 attributes and can be classified as Spam or Not 
Spam. The test set contains 500 instances of email. This dataset is considered very noisy 
since the highest absolute value of correlation of between the attribute and the class is 
0.39. 
Because we consider each attribute in each dataset contribute the same usefulness in the 
classification, these datasets have to be normalized into the same range of values. For the 
Iris and Diabetes dataset, all attributes are scaled down to a range between 0 and 1 by. In 
the Spam dataset, all attributes’ values are scaled down to the range between 0 and 100 
since their values would be so small if they are in the range between 0 and 1 and the C4.5 
program in this project only accept values in floating point number that has one digit after 
the decimal point.  
In addition, since some of the four programs only consider numeric data, the classes of 
each instance are changed to the numeric values accordingly. For example, in the 
diabetes dataset, Healthy = 1 and Sick = 0. 
 
4. Procedure 
The four programs for four algorithms are used on each dataset. In the testing phase, 
program outputs are compared to the actual ones. The number of wrong classifications is 
calculated to determine the accuracy rate. Also, the training and testing phase time of 
each dataset are measured to compare the computational overhead. 
 
IV. Assumptions 
 
V. Results 
The results from the testing phase are below 
 

ACCURACY 
Naïve 
Bayes 

K-Nearest 
Neighbor C4.5 

Backpropagation 
Network 

Iris 93.3% 93.3% 86.7% 87.0% 
Diabetes 84.4% 77.8% 73.3% 73.3% 

Spam 81.6% 89.8% 91.4% 92.6% 
 

TRAINING 
Naïve 
Bayes 

K-Nearest 
Neighbor C4.5 

Backpropagation 
Network 

Spam Very fast Very fast Very fast 6 hours 
 

TESTING Naïve K-Nearest C4.5 Backpropagation 



Bayes Neighbor Network 
All Very fast Very fast Very fast Very fast 

 
a) Accuracy 
In the un-noisy environment, Naïve Bayes and K-Nearest Neighbor produce a very high 
accuracy of 93.3%. Neural network produces the least accuracy and this is not 
unexpected.  
In the noisy environment, there is an interesting result. The accuracy in noisy 
environment with small number of training data is decreasing from the left to right in the 
table, but with very large number of training data, the accuracy is then increasing from 
the left to the right. This suggests that measurement of accuracy of a classification 
algorithm is really tough, and it depends on the characteristics of the dataset.  
 
b) Training and Testing time 
Neural Network has a very high computational overhead in the training phase. When 
being timed on the Spam training set, it takes 6 hours to create a data model for the 
classification. If a dataset contains millions of training data with many attributes, and the 
number of  training loops on the set is high, the network will take a very long time on a 
typical computer to arrive with a model. The other algorithms run very fast not only in 
any data environment. However, the more data and the longer time a neural network is 
train with, the better result it will produce.  
 
VI. Issues 
The major issue in this project is to determine what performance factor to take into 
account to evaluate the algorithms. Since this is a general comparison, accuracy and time 
overhead are two good factors to consider. For specific comparison, performance factors 
have to be considered carefully. 
 
 
VII. Appendix 
 


