Bayesian Learning Algorithm

What is Bayesian Algorithm?

 Bayesian learning algorithm is a method of calculating probabilities for hypothesis

One of the most practical approaches to certain type of learning problems

Use of Bayesian analysis

Used to justify a design choice in neural network algorithm

Provides perspective for understanding other learning algorithms

Outperforms other methods

Prior Probability

- P (Asymptomatic) = 142 / 302 = 0.4702 = 47%
- P (Abnormal angina) = 50 / 302 = 0.1656 = 17%
- P (Angina) = 23 / 302 = 0.0761 = 8%
- P (No tang) = 87 / 302 = 0.2881 = 28%

Count (Chest pain type)

Attrib	ute	Value	Asymptomatic	Abnormal Angina	No Tang	Angina
Gend	er	М	104	32	19	52
		F	38	18	4	35
Heart Rate		0 - 100	6	0	0	2
		100 - 130	39	3	3	6
		130 - 170	84	28	12	57
		170 - inf.	13	19	8	22

Probabilities (Chest pain type)

Attribute	Value	Asymptomatic	Abnormal Angina	No tang	Angina
Gender	М	104 / 142	32 / 50	19 / 23	52 / 87
	F	38 / 142	18 / 50	4 / 23	35 / 87
Heart					
Rate	0 - 100	6 / 142	0	0	2 / 87
	100 - 130	39 / 142	3 / 50	3 / 23	6 / 87
	130 - 170	84 / 142	28 / 50	12 / 23	57 / 87
	170 - inf.	13 / 142	19 / 50	8 / 23	22 / 87

Conditional Probability

- $P(T | Asymptomatic) = 104/142 \times 84/142 = 0.4332$
- $P(T | Abnormal Angina) = 32/50 \times 28/50 = 0.3584$
- $P(T | Angina) = 19/23 \times 12/23 = 0.4309$
- $P(T | No Tang) = 52/87 \times 57/87 = 0.3916$

Combining the conditional and prior probabilities, we estimate a likelihood of each chest pain type:

Likelihood of Asymptomatic = $0.4702 \times 0.4332 = 0.2037$

Likelihood of Abnormal Angina = $0.1656 \times 0.3584 = 0.0594$

Likelihood of Angina = $0.0761 \times 0.4309 = 0.0328$

Likelihood of No Tang

 $= 0.2881 \times 0.3916 = 0.1128$

Estimated Probability

The estimated probability P(T) is a sum of likelihood values of each class

P(T) = 0.2037 + 0.0594 + 0.0328 + 0.1128 = 0.4087

Actual or Final Probability

0.4332 x 0.4702 P (Asymptomatic) = ------ = 0.50 = 50% 0.4087

0.3584 x 0.1656 P (Abnormal Angina) = ------ = 0.15 = 14% 0.4087

P (Angina) = ------ = 0.08 = 8%0.4087 0.3916 x 0.2881 P (No Tang) = ----- = 0.28 = 28\%

0.4087

Advantages of Bayesian Method

Really easy to use

It requires one scan of training data

New instances can be classified by combining the predictions of multiple hypothesis

Disadvantages of Bayesian Method

- It does not always give us results that are satisfied enough to do our classification
- The attributes that we would use are not always independent
- Division of the ranges can effect the results