THE C4.5 PROJECT

By Fatine Bourkadi

Outlines

- Introduction to C4.5
- Training Set
- Test set
- Data Sets
- results

Introduction to C4.5

- C4.5 is an algorithm used to generate a decision tree developed by Ross Quinlan..
- C4.5 is an extension of Quinlan ID3 algorithm
- C4.5 builds decision trees from a set of training data using the concept of information entropy.

Training Set

- Entropy
 - $H(R,A) = \sum_{i=1}^{n} p(class \downarrow i/R) \times \log[p(class \downarrow i/R)]$

Training Set

- The training data is a set of $S=s \downarrow 1$, $s \downarrow 2$,... of already classified examples. Each sample $S \downarrow i$, = $x \downarrow 1$, $x \downarrow 2$,... is a vector where $x \downarrow 1$, $x \downarrow 2$, represent attributes or features of the sample. The training data is augmented with vector $C=c \downarrow 1$, $c \downarrow 2$,... represent the class to each sample belongs.
- Name file
 - Provides names for classes, attributes, and attribute values.
- Data file
 - Describe the training cases from which decision trees are to be constructed.

Test Set

Test file

• Test set to evaluate the classifier that C4.5 have produced.

Iris Flower Datasets

Iris flower

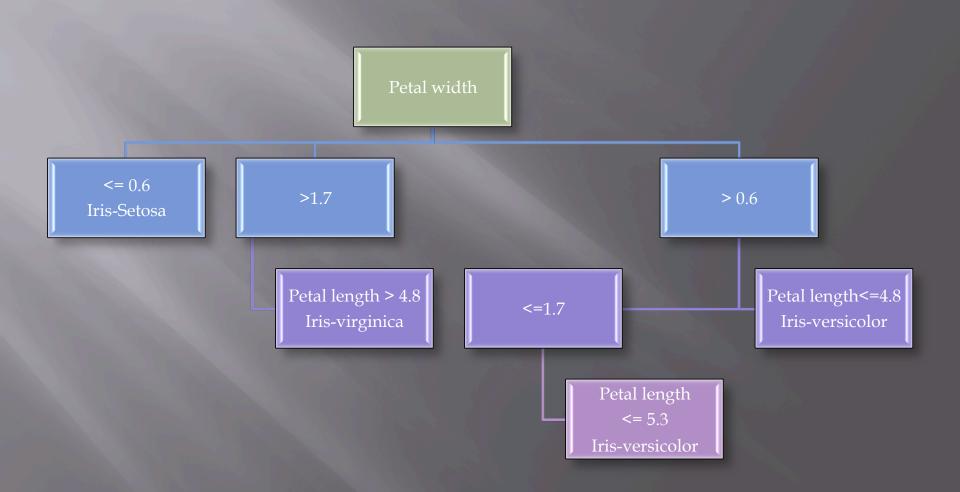
- 150 instances
- three classes:
 - Iris-setosa
 - Iris-versicolor
 - Iris-virginica
- Four Attributes in cm:
 - Sepal width
 - Sepal length
 - Petal width
 - Petal length

Wine Dataset

Wine

- 153 instances
- Three classes:
 - Class 1
 - Class 2
 - Class 3
- 13 attributes:

 Alcohol, Malic acid, Ash, Alkalinity of ash, Flavonoids, Magnesium, Nonflavanoid Phenols, Proanthocyanins, color intensity, Hue, OD280/OD315 of diluted wines, Praline.


Car Evaluation Dataset

Car Evaluation

- 1728 instances
- Four classes:
 - Unacceptable
 - Acceptable
 - Good
 - Very good
- Six attributes:
 - Buying
 - Maintenance
 - Doors
 - Person
 - Lug-boot
 - Safety

Iris Dataset Decision Tree

Wine Dataset

■ Rules for wine dataset:

• Rules examines the original decision tree produced by the C45. program and derives from it a set of production rules of this form.

```
Rule 5:
          Color intensity > 3.4
          OD280/OD315 of diluted wines > 2.11
          Praline > 714
          -> class 1 [96.1%]
Rule 4:
          Color intensity <= 3.4
          -> class 2 [96.2%]
Rule 3:
          OD280/OD315 of diluted wines > 2.11
          Praline <= 714
          -> class 2 [93.6%]
Rule 1:
                                                                                    This
          Hue \leq = 0.96
          OD280/OD315 of diluted wines <= 2.11
          -> class 3 [92.5%]
Default class: 2
```

Wine dataset

■ The statistics for the first rule

```
Evaluation on training data (115 items):

Rule Size Error Used Wrong Advantage
---- ---- ---- ---- -----

5 3 3.9% 35 0 (0.0%) 35 (35|0) 1
```

Car Evaluation dataset

Following the report on each rule there is a summary and a confusion matrix showing where the misclassifications of the training cases occur.

Result Review

- Iris Dataset:
 - Has 100% accurate data
- Wine Dataset:
 - Has 89.7% accurate data
- Car Evaluation Dataset:
 - Has 98.7% accurate data

References

- Aleshunas, J. (n.d.). http://mercury.webster.edu/aleshunas/Data %20Sets/Supplemental %20Excel %20Data %20Sets.htm.
- Dunham, M. H. (2003). Data Mining Introductory and Advanced Topics. Saddle River, New Jersey, USA: pearson Education.inc.
- Khoa D, D. (2006). Comparing Classification using C4.5, Naive Bayes, K-nearest Neighbors, and Backpropagation Neural Network Algorithms.
- Kumar, X. W. (2009). The Top Ten Algorithms in Data Mining.
 Boca Raton: Taylor and Francis Group, LLC.
- Pang-Ning Tan, M. S. (2006). *Introduction to Data Mining*.
 Boston, MA, USA: Pearson Education, Inc.
- Quinlan, J. R. (1993). *C4.5: Programs for Machine Learning*. San Meteo: Morgan Kaufmann .