Genetic Programming: Sensitivity to Parameters

By: Sarah Bailey

MATH 3220-01

December 15, 2010

Outline

- Genetic Programming
- Lil-GP System
- Ant and Regression Algorithms
- GP Parameters

What is Genetic Programming?

An evolutionary algorithm-based methodology inspired by biological evolution to find computer programs that perform a userdefined task.

GP Continued

- Challenge in Computer Science
 - Goal of GP: To achieve automatic programming
- Domain- Independent method
 - The user provides: building blocks & parameters
 - GP provides: optimal solution

Preparatory Steps of GP

- The user needs to specify:
 - The set of terminals
 - The set primitive functions
 - The fitness measure
 - Parameters used in the run
 - Termination criterion and method for designating the results of the run

How GP Works

- Starts with a random initial population (generation o).
- Execute each program and assign a fitness value.
- Select *n* number of individuals from the population
- Create new individuals by applying genetic operations
 - Reproduction, Crossover and Mutation.
- Keep the best-so-far solutions for future generations
- Repeat steps 2 5 until an optimal solution has been reached or until the algorithm has reached it's max iteration amount.

Picture: http://geneticprogramming.us/What_is_Genetic_Programming>

GP Representation

- Tree structure
 - Functional Nodes
 - Operators
 - Terminal Nodes
 - Operands
 - In-Order Traversal
 - Left. Root. Right

$$3+2*X$$

Genetic Operations

- Crossover
 - Combines genetic material from two parents by swapping a part of one parent with a part from the other
- Mutation
 - Operates on one individual and randomly chooses a point in it's tree and replaces it with an randomly generated subtree at that point
- Reproduction
 - Makes an exact copy of an individual and replaces it into the population

Crossover in Action

Mutation In Action

Lil-Gp: Genetic Programming System

- Written in C-language
- Three genetic Operators
- Supports random constants
- Output files are easily useable in programs like Excel
- Parameter files specify how individuals are selected
- Three Problems
 - Boolean 11- Multiplexer, Symbolic Regression, and Artificial Ant

Artificial Ant Algorithm

- Represented by a grid provided with a trail of food pellets distributed over the grid.
- Santa Fe Trail (32 X 32 grid; 89 food pellets)
- The GP creates a path by walking through the map.
- It's goal is to eat as much food in the given amount of time

Santa Fe Ant Trail

- It will run for some *n* steps.
- Fitness will be measured by the number of food pellets the ant encounters
- Has 7 operators:
 - If-food-ahead; progn2; progn3; progn4
 - Move; left; right

Regression Algorithm

- The programs are designed to generate a function which fits a targeted curve.
- The user inputs a set of data points
- GP outputs a function that fits the data
- The terminal set consists of 1 -2 members:
 - The input value x, and (optionally) an ephemeral random constant
- The function set has 8 members:
 - Multiply, protected-divide, add, subtract, sine, cosine, exponentiation and protected-log

Regression Example

Given data points

GP results

GP Parameters

- Tree size limitation
 - Maximum number of nodes/depth of a tree
- Fitness
- Selection Techniques
 - Tournament (*)
 - Fitness Proportional
 - Ranking Selection

My Experiment: Tested Parameters

- Purpose of my experiment
 - No set guidelines for parameter selection
- Population size
 - Selecting a starting point for a number of individuals to be chosen from.
 - Population size = 200, 500, 1000
- Method of generating an initial population
 - Creating a variety of program structures for later evolution
 - Methods: Full, Grow, Half-and-Half
- Breeding Operators Probability
 - Evolution proceeds by transforming the initial population by the use of operators
 - 90% C-5% M; 80% C-15% M; 70% C-25% M

Conclusions

- Artificial Ant Problem
 - The initial population method was most sensitive
 - Population size second most sensitive
 - Breeding operation probability least sensitive
- Regression Problem
 - Difficult to determine which parameters are more sensitive
 - All of the graphs are similarly shaped
 - Convergence occurs earlier
 - Because of the basis of the problem, there are higher optimal solutions

Review

- Genetic Programming
 - Branch of genetic algorithms that is a method for getting computers to automatically solve problems.
- Lil-GP System
 - Executable that contains two problems addressed in my experiment
- Artificial Ant and Regression Algorithms
 - Ant- deals with finding the optimal path for the ant
 - Regression- wants to find a function that matches the given data points
- Tested Parameters
 - Ant results showed major sensitivity to the initialization method
 - Regression's results were similar to Ant results, just not as much sensitivity among the different parameters.

Sources

- "Genetic Programming." Dolan, Kevin. 2009. Web. 13 Dec. 2010. http://geneticprogramming.us/
 What_is_Genetic_Programming>
- "Genetic Programming." *Wikipedia*. 14 Oct. 2010. Web. 13 Dec. 2010. http://en.wikipedia.org/wiki/Genetic_Programming.
- "What Is Genetic Programming?" *Genetic Programming*. 27 Aug. 2003. Web. 13 Dec. 2010. http://www.genetic-programming.com/gpanimatedtutorial.html.
- Zongker, Douglas, Punch, Dr. Bill, and Rand, Bill. lil-gp 1.01
 User's Manual. Michigan State University, 1995. PDF