"No Free Lunch" Theorem

Masha Kinley

<u>Clustering</u>

- Applications
- Advantages and disadvantages
- Categories
- <u>Algorithms</u>
 - K-Means
 - Hierarchical (hclust)
 - Density based (DBSCAN)
- Experiments and results

Clustering

- Division of data into groups of similar objects
- Each cluster, consists of objects that are similar between themselves and dissimilar to objects of other groups
- Reveal hidden patterns

Clustering as a data mining tool:

- Biology
- Medicine
- Security
- Business intelligence
- Web search
- Powerful tool but requires planning and preparation

Clustering methods

- Partitioning
 - "One object one group". Most are distance based. Spherical shape.
- Hierarchical
 - Bottom-up or Top-down. Cannot be undone.
- Density-based
 - Number of objects in the neighborhood. Arbitrary shapes.
- Grid-based
 - Fast processing time. Grid size matters.

Algorithms

- K-Means
 - Centroid of each cluster represents that cluster
 - Centroid mean value of the objects in the cluster
 - Centroid is randomly selected
 - Euclidean distance is then measured between each other object and the cluster mean
 - Iterations improve within-cluster variations and new means are assigned
 - Iterations continue until the clusters are stable between iterations
 - Fast computing speed
 - Does not deal with non-convex shapes
 - Will assign outliers to a cluster
 - Number of clusters as an input parameter

Algorithms

- Hierarchical
 - Forms a "tree" of clusters a dendrogram
 - Useful for data summarization or visualization
 - Distance between clusters of objects
 - Many types
 - hclust
 - Bottom-up each point is its own cluster
 - Closest two clusters are combined into one
 - Repeats until all points are one cluster
 - Can be too sensitive to outliers
 - Difficult to interpret results for large datasets

Algorithms

- DBSCAN
 - Based on connected regions of high density
 - Mass/volume
 - Point p and its neighborhood of radius ε , the
 - *mass* of the neighborhood number of data points contained within such neighborhood
 - *volume* of the neighborhood is volume of the resulting shape of the neighborhood thus defining the density at the point *p* of the given neighborhood.
 - Core points, border points and outliers
 - Time and computing power
 - Poor clustering quality when data density is uniform
 - Input parameters (radius and min points) are hard to determine

Experiment

- Two datasets
 - Wine
 - 3 distinct spherical clusters
 - 178 instances, 13 attributes
 - No missing values
 - very little noise

Experiment

- Clx Dataset
 - Created by Dr. Aleshunas
 - 3 non-convex clusters
 - 827 instances
 - 3 attributes

Results – Wine

Results – Wine

• DBSCAN

Results – Wine

• K-Means

Results – Clx

Results – Clx

Conclusion

- No free lunch
 - multiple methods should be explored in each case
 - nature of the dataset must be considered
- Questions?

Sources

- Han, J., Kamber, M., & Pei, J. (2012). *Data Mining Concepts and Techniques .* Waltham: Morgan Kaufman .
- Kodali, T. (2016, January 22). *Hierarchical Clustering in R.* Retrieved from R-Bloggers : https://www.r-bloggers.com/hierarchical-clustering-in-r-2/
- Galili, T. (2015, August). *K-Means Clustering*. Retrieved from R-Statistics : https://www.r-statistics.com/2013/08/k-means-clustering-from-r-inaction/