“No Free Lunch” Theorem
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* Clustering
« Applications
« Advantages and disadvantages
« Categories

 Algorithms
 K-Means
 Hierarchical (hclust)
* Density based (DBSCAN)

« EXperiments and results




Clustering

* Division of data into groups of similar objects

« Each cluster, consists of objects that are similar between themselves and
dissimilar to objects of other groups

* Reveal hidden patterns

Clustering as a data mining tool:
Biology

Medicine

Security

Business intelligence

Web search

« Powerful tool but requires planning and preparation



Clustering methods

* Partitioning
* “One object — one group”. Most are distance based. Spherical shape.

 Hierarchical
« Bottom-up or Top-down. Cannot be undone.

» Density-based
 Number of objects in the neighborhood. Arbitrary shapes.

 Grid-based
« Fast processing time. Grid size matters.



Algorithms

* K-Means

* Centroid of each cluster represents that cluster
* Centroid — mean value of the objects in the cluster
Centroid is randomly selected

Euclidean distance is then measured between each other object and the cluster mean
Iterations improve within-cluster variations and new means are assigned
Iterations continue until the clusters are stable between iterations

e Fast computing speed

Does not deal with non-convex shapes
Will assign outliers to a cluster

Number of clusters as an input parameter



Algorithms

* Hierarchical

* Forms a “tree” of clusters —a dendrogram

e Useful for data summarization or visualization
Distance between clusters of objects
Many types

* hclust
e Bottom-up — each point is its own cluster

* Closest two clusters are combined into one
* Repeats until all points are one cluster

Can be too sensitive to outliers
Difficult to interpret results for large datasets



Algorithms

* DBSCAN
« Based on connected regions of high density
* Mass/volume
« Point p and its neighborhood of radius €, the

* mass of the neighborhood number of data points contained within such

neighborhood
« volume of the neighborhood is volume of the resulting shape of the neighborhood
thus defining the density at the point p of the given neighborhood.

« Core points, border points and outliers
* Time and computing power
* Poor clustering quality when data density is uniform
* Input parameters (radius and min points) are hard to determine



Experiment
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* Two datasets
 Wine
3 distinct spherical clusters
« 178 instances, 13 attributes
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Experiment

» Clx Dataset
« Created by Dr. Aleshunas
« 3 non-convex clusters
e 827 Instances
3 attributes

cIx$Attr 3

clx$Attr 2




Results — Wine

 Hclust
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Results — Wine

« DBSCAN
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Results — Wine
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Results — Clx

e Hclust Cluster Dendrogram
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Results — Clx
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Results — Clx

« DBSCAN
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Conclusion

 No free lunch

« multiple methods should be explored in each case
* nature of the dataset must be considered

* Questions?
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