K-MEANS++ OPTIMAL INITIALIZATION ALGORITHM

An Improved K-means Clustering Method

OVERVIEW

- K-means Clustering Algorithm
- K-means++ Initialization Algorithm
- Experiment
- Datasets
- Conclusion

K-MEANS CLUSTERING ALGORITHM

- A well-known naïve clustering method.
- Designed to find natural clusters in unclassified datasets.
- Only requires a single input parameter K
- Uses random initialization technique for centroids.
- Uses Euclidean distance to determine instances' cluster assignments.
- Calculates means of finished clusters then starts over.

CLUSTERING EXAMPLE

MEAN CALCULATION AND RE-CLUSTERING

K-MEANS++ INITIALIZATION ALGORITHM

- Arbitrarily selects the first centroid.
- Every other centroids selected based on distance from other centroids.

EXPERIMENT

- Compared standard K-means and K-means++ methods.
- Goal: to discover if either one of them produces better results than the other.
- Setup:
 - Both methods run against 3 datasets with classes Cluster, Iris, and Wine.
 - Each set has 3 classes which are used to verify the quality of the resulting clusters.
 - Quality in clusters is also determined by majority class
 - Fixed "arbitrary" setup to create a optimal and worst random centroid selection.
 - Both methods run against both centroid setups 3 times with a different K value.
 - Total of 36 trials.

MULTIDIMENSIONAL DATA - CLUSTER

MULTIDIMENSIONAL DATA - IRIS

MULTIDIMENSIONAL DATA - WINE

		10 DI 10 DI 10	2 +	10 10 10 10 10 10 10 10 10 10 10 10 10 1	15 20 25 30	Same and the second	1 2 3	9.05 All 02 00 1	02 04 04		23 3 75 10 125	10100 APRIL 80	2 3 +	20.0 20 80.0
- Abohel	1+ 13 12 11		10											
Hak Ark									14 16 ja 4					-
МЪ	3 25 2 15	sfar	and the						隆科 。		N.		1 (A)	
Akaliniy		- Alta												
Марастина.	149 149 120 103 30		b e			/							* 14	
Please					13			R.						
Servarale	+ 3 2 1					jê.				A.	Č.,		. Alt	
Noaflevoaral														
Recalleryvain	3 2 1				5			17		ĺ			Ner F	
Color												L.		
H•	13 123 125 1 0.75 0.5				1									
COD139 /COD115									1					
Roha	1:00 1000 :00													
		Akehel	Male Ark	Arlı	Alexingy	Ma perma	Platek	Thranesh	Neafly wards	Beeadlesysame	Celez	Ew	OD:30 /OD:11	Roha

RESULTS

- K-means++ proven to be better.
- No reason to use standard K-means.
- Still not perfect.

	K-means				K-means++			
	Cluster Dataset	t		Cluster Dataset				
	Optimal	Worst			Optimal	Worst		
3 Clusters	1	1		3 Clusters	1	1		
5 Clusters	0	1		5 Clusters	1	1		
7 Clusters	1	1		7 Clusters	1	1		
	Iris Dataset				Iris Dataset			
	Optimal	Worst			Optimal	Worst		
3 Clusters	17	18		3 Clusters	17	17		
5 Clusters	23	24		5 Clusters	19	19		
7 Clusters	10	17		7 Clusters	3	4		
	Wine Dataset			Wine Dataset				
	Optimal	Worst			Optimal	Worst		
3 Clusters	46	53		3 Clusters	45	45		
5 Clusters	39	44		5 Clusters	25	26		
7 Clusters	42	43		7 Clusters	42	42		

IMPORTANT NOTES

- Imperfect simulation of K-means++
- Results could be better.
- Results should give clearer favor to K-means++

REVIEW

- K-means Clustering Algorithm
- K-means++ Initialization Algorithm
- Comparison Experiment
- Multidimensional Datasets
- Results

WORKS CITED

- Aleshunas, J. (2013). Cluster Set.
- Alsabti, K., Ranka, S., & Singh, V. (1997). *An effcient k-means clustering algorithm.*
- Arthur, D., & Vassilvitskii, S. (2007). *K-means++: the advantages of careful seeding.* Philadelphia: Society for Industrial and Applied Mathematics Philadelphia.
- Fisher, R. A. (1936). Iris Flower Data Set.
- Forina, M. (1988). Wine Recognition Data. *PARVUS: An extendable package of programs for data exploration, classification and correlation*. Genoa, Italy: Institute of Pharmaceutical and Food Analysis and Technologies.
- Inaba, M., Katoh, N., & Imai, H. (1994). Applications of weighted Voronoi diagrams and randomization to variance-based k-clustering. SCG '94 Proceedings of the tenth annual symposium on Computational geometry (pp. 332-339). New York: ACM.
- MacKay, D. (2003). An Example Inference Task: Clustering. In D. MacKay, *Information Theory, Inference and Learning Algorithms* (pp. 284-292). Cambridge University Press.
- Shaefer, I. (2013). Cluster Set Modified.