Tree Search Techniques By Sarah Bailey

What to Expect?

- What is a tree?
- Types of trees:
 - Spanning tree
 - Rooted tree
 - Binary tree
- Searching techniques
 - Depth First Search
 - Breath First Search
 - Min. and Max. Spanning trees

What is a Tree?

- Connected Graph
- No cycles
- Contains: N vertices and n-1 edges
- Not a tree if:
 - Remove an edge from a graph
 - Add an edge to a graph

Types of Trees

Spanning Trees
Rooted Trees
Binary Trees

Spanning Tree

- Includes all vertices in graph G
- Include all edges that do not create cycles
- Edges = n-1
- Searches: minimum and maximum search

Rooted Tree

- Directed graph
- Two conditions:
 - Ignoring directions of graph results in a tree
 - Unique vertex R with in degree(0)
- Components
 - Root, Internal Vertices, Terminal Vertices, Parents, Children, Ancestors, Descendants

Binary Tree

- Rooted Tree
 - Root
 - Parent nodes
 - Maximum of two children
 - Child nodes
 - Right or left child

Searching a Tree

- Begin at the Root
- Explore following nodes
- End at desired node

Depth-First Search Algorithm

- Goal: Find a spanning tree on a graph *G*
- Designate starting point
- Visit all acceptable neighboring nodes (No cycles!)
- Backtrack if necessary
- End at last node.
- Keep track of the order in which nodes are visited

$L = \{A, C, B, E, F, H, I, G, D, J, L K\}$

GRAPH G

Breadth-First Search Algorithm

- Goal: Find spanning tree
- Similar to DFS, but shorter.
- Designate starting node
- Visit each appropriate adjacent node (without creating cycles!)
- End at the *n*th node with created spanning tree
- Keep track of visited nodes (L) and length (k)

Other Spanning Tree Searches

- Minimum Spanning Tree:
 - Goal: Create a spanning tree with minimum path value
 - Start at a designated root
 - Select the adjacent node with smallest edge value
 - Continue until all nodes are visited
 - Keep running total of the selected edge values
- Maximum Spanning Tree:
 - Goal: Create a spanning tree with maximum path value

Example of Minimum Spanning Tree

L = {f, b, a, e, d, c} T=1 + 2 + 3 + 2 + 4 = 12

Binary Tree Search Techniques

- Preorder Traversal ("Polish Notation")
 - Start at Root
 - Root....Left....Right
- Inorder Traversal
 - Start at Root
 - Left....Root....Right
- Postorder Traversal ("Reversed Polish Notation")
 - Start at Root
 - Left....Right....Root

Preorder Traversal

Root - Left - Right

Inorder Traversal

Left – Root - Right

Postorder Traversal

Left – Right - Root

Summary

- Definition of a tree
- Types of trees
 - Spanning
 - Rooted
 - Binary
- Types of searches
 - Depth-first search
 - Breath-first search
 - Min. and Max. spanning trees
 - Preorder, Inorder, Postorder traversal

References

- http://cs482.elliottback.com/lecture-4minimum-spanning-trees/
- http://en.wikipedia.org/wiki/Binary_tree
- http://en.wikipedia.org/wiki/Tree_graph
- http://www.kirupa.com/developer/ actionscript/depth_breadth_search2.htm
- http://www.i-cherubini.it/mauro/blog/ 2006/04/06/minimum-spanning-tree-ofurban-tapestries-messages/