Tree Search Techniques
 By Sarah Bailey

What to Expect?

- What is a tree?
- Types of trees:
- Spanning tree
- Rooted tree
- Binary tree
- Searching techniques
- Depth First Search
- Breath First Search
- Min. and Max. Spanning trees

What is a Tree?

- Connected Graph
- No cycles
- Contains: N vertices and $n-1$ edges
- Not a tree if:
- Remove an edge from a graph
- Add an edge to a graph

Types of Trees

-Spanning Trees

-Rooted Trees
-Binary Trees

Spanning Tree

- Includes all vertices in graph G
- Include all edges that do not create cycles
- Edges = n-1
- Searches: minimum and maximum search

Rooted Tree

- Directed graph
- Two conditions:
- Ignoring directions of graph results in a tree
- Unique vertex R with in degree(0)
- Components
- Root, Internal Vertices,
 Terminal Vertices, Parents, Children, Ancestors, Descendants

Binary Tree

- Rooted Tree
- Root
- Parent nodes
- Maximum of two children
- Child nodes
- Right or left child

Searching a Tree

- Begin at the Root
- Explore following nodes
- End at desired node

Depth-First Search Algorithm

- Goal: Find a spanning tree on a graph G
- Designate starting point
- Visit all acceptable neighboring nodes (No cycles!)
- Backtrack if necessary
, End at last node.
- Keep track of the order in which nodes are visited

GRAPH G

Breadth-First Search Algorithm

- Goal: Find spanning tree
- Similar to DFS, but shorter.
- Designate starting node
- Visit each appropriate adjacent node (without creating cycles!)
- End at the nth node with created spanning tree
- Keep track of visited nodes (L) and length (k)

Breadth-First Search

Other Spanning Tree Searches

- Minimum Spanning Tree:
- Goal: Create a spanning tree with minimum path value
- Start at a designated root
- Select the adjacent node with smallest edge value
- Continue until all nodes are visited
- Keep running total of the selected edge values
- Maximum Spanning Tree:
- Goal: Create a spanning tree with maximum path value

Example of Minimum Spanning Tree

$$
\begin{aligned}
& L=\{f, b, a, e, d, c\} \\
& T=1+2+3+2+4=12
\end{aligned}
$$

Binary Tree Search Techniques

- Preorder Traversal ("Polish Notation")
- Start at Root
- Root....Left....Right
- Inorder Traversal
- Start at Root
- Left....Root....Right
- Postorder Traversal ("Reversed Polish Notation")
- Start at Root
- Left....Right....Root

Preorder Traversal

Root - Left - Right

Inorder Traversal

Left - Root - Right

Postorder Traversal

Left - Right - Root

Summary

- Definition of a tree
- Types of trees
- Spanning
- Rooted
- Binary
- Types of searches
- Depth-first search
- Breath-first search
- Min. and Max. spanning trees
- Preorder, Inorder, Postorder traversal

References

- http://cs482.elliottback.com/lecture-4-minimum-spanning-trees/
- http://en.wikipedia.org/wiki/Binary_tree
, http://en.wikipedia.org/wiki/Tree_graph
- http://www.kirupa.com/developer/ actionscript/depth_breadth_search2.htm
- http://www.i-cherubini.it/mauro/blog/ 2006/04/06/minimum-spanning-tree-of-urban-tapestries-messages/

