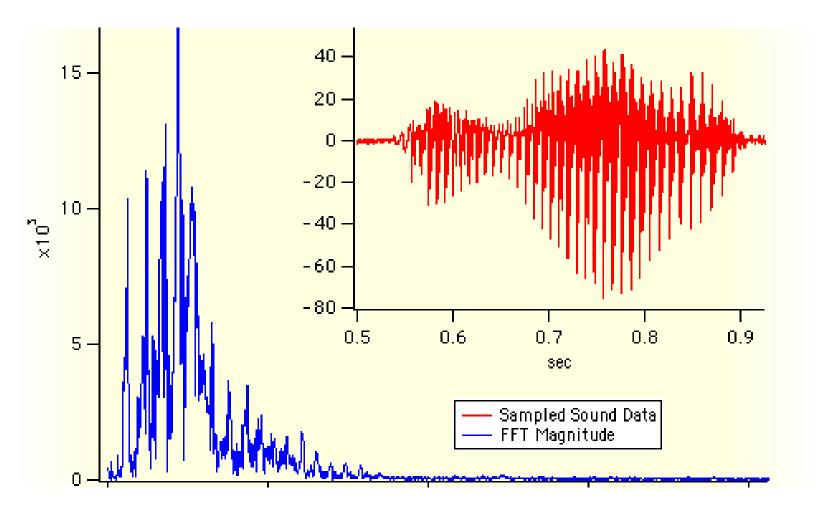
SIGNAL PROCESSING

JEFFREY BERRY

OVERVIEW

- * Background
- * Types of Waves and Signals
- * Filtering
- * Example

BACKGROUND



BACKGROUND

All take some form of:

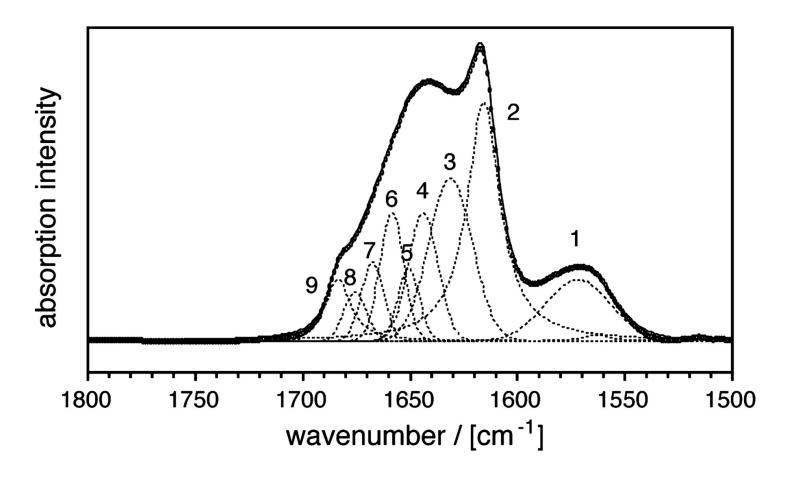
 $recorded\ signal(x) = interfering\ signal(x) * true\ signal(x)$

Where * is some operation such as addition, subtraction, multiplication, convolution, etc.

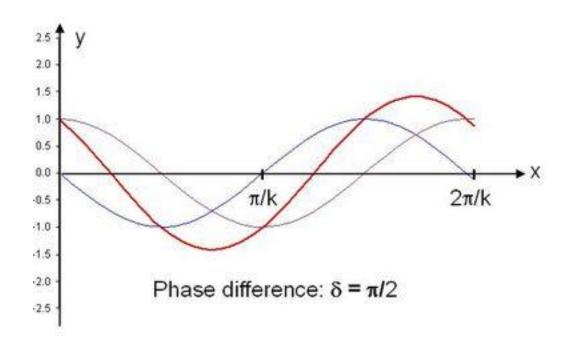
BACKGROUND

- Depending on how the signal is being treated (ie the interfering signal acting on the true) will determine the analytic techniques used to find the true signal
- Unlike most real life problems, there are easy and hard signals to decipher

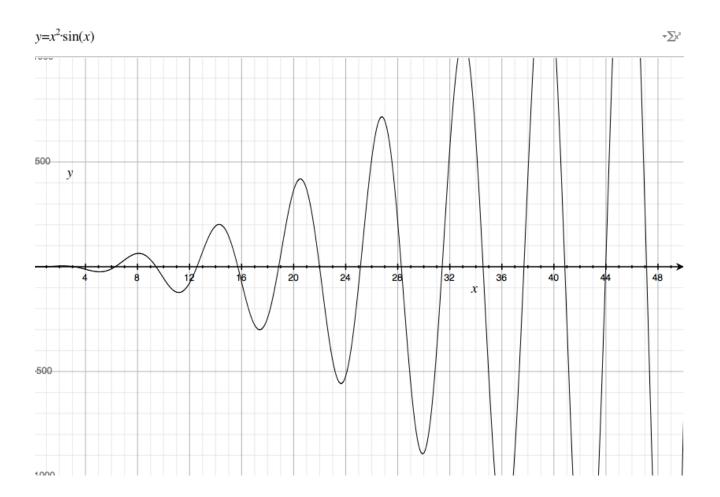
Additive (Constructive Interference)



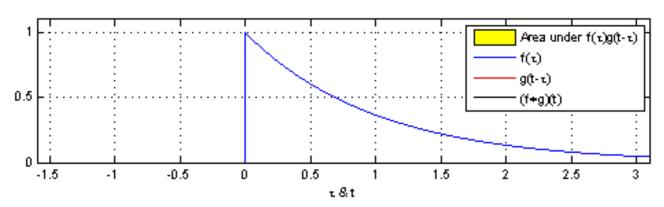
Subtractive (Destructive Interference)



Multiplicative (Either Constructive of Destructive)



Convolution (Weighted Interference)



Wikipedia contributors. "Convolution."

Additive, Subtractive and Multiplicative interfering signals are easy to deal with

Simply do the inverse of the interfering process otherwise known as correcting for background noise

$$C(u) = \int_{-\infty}^{\infty} f(x)g(u-x)dx$$

$$FT_{\omega}(x*y) \stackrel{\triangle}{=} \int_{-\infty}^{\infty} \left[\int_{-\infty}^{\infty} x(\tau)y(t-\tau)d\tau \right] e^{-j\omega t}dt$$

$$= \int_{-\infty}^{\infty} d\tau \, x(\tau) \int_{-\infty}^{\infty} dt \, y(t-\tau)e^{-j\omega t}$$

$$= \int_{-\infty}^{\infty} d\tau \, x(\tau)e^{-j\omega\tau}Y(\omega)$$

$$= X(\omega)Y(\omega),$$

IMPORTANT NOTE

Time Domain FT Frequency Domain

Three functions at play:

 $recorded\ signal(x) = interfering\ signal(x) * true\ signal(x)$

$$r(x) = \int_{-\infty}^{\infty} [i(\tau) \cdot t(x - \tau)] d\tau$$

Convolution Eq

$$R(\omega) = I(\omega) \cdot T(\omega)$$

Fourier Transform

$$\frac{R(\omega)}{I(\omega)} = T(\omega)$$

Solve for True Signal

$$\frac{R(\omega)}{I(\omega)} = T(\omega)$$

T(omega) is very large when:

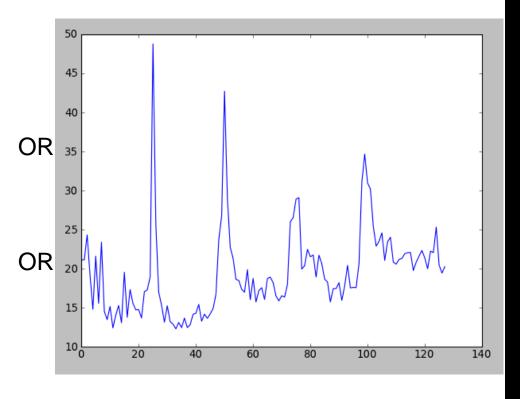
*I(omega) is very small *R(omega) is very large

T(omega) is very small when:

*I(omega) is very large

*R(omega) is very small

T(omega) is zero when:
*R(omega) is zero

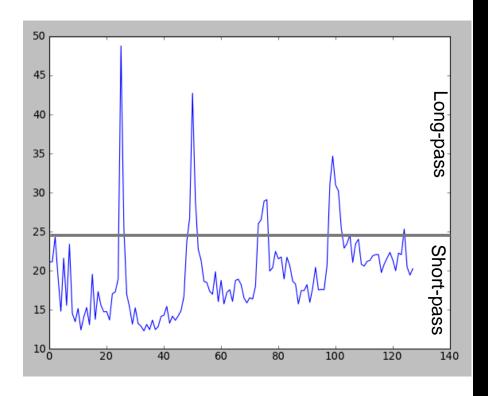


$$\frac{R(\omega)}{I(\omega)} = T(\omega)$$

Depending on the data:

*the lower amplitude frequencies are desired: short pass filter

*the higher amplitude frequencies are desired: long pass filter

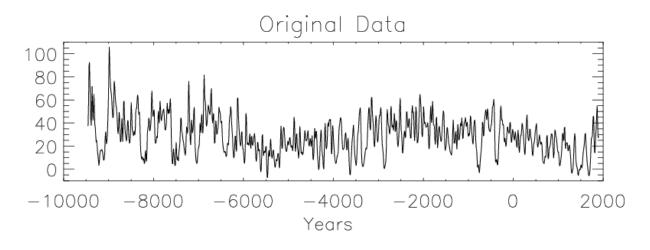


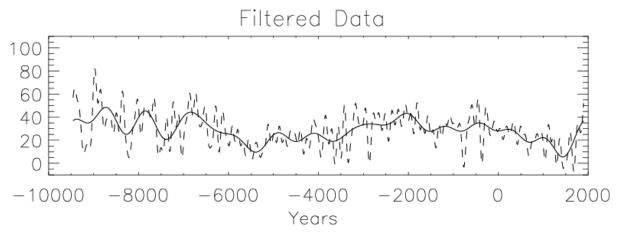
- *Judgment is made by analyzer on how much to filter out
- *Potentially leads to incorrect data

$$\left(\frac{R(\omega)}{I(\omega)}\right)_{Fil} = T(\omega)_{Fil}$$

$$t(x)_{fil} = \int_{-\infty}^{\infty} T(\omega)_{fil} \cdot e^{i\omega t} d\omega$$

EXAMPLE





BIBLIOGRAPHY

The chaotic solar cycle - I. Analysis of cosmogenic -data

A. Hanslmeier and R. Brajša

A&A 509 A5 (2010)

DOI: http://dx.doi.org/10.1051/0004-6361/200913095

WaveMetrics. WaveMetrics. *IGOR Pro.* December 07, 2004. Available at:

http://www.wavemetrics.com/products/igorpro/dataanalysis/signalprocessing.htm. Accessed November 01, 2012.

Wikipedia contributors. "Convolution." *Wikipedia, The Free Encyclopedia*. Wikipedia, The Free Encyclopedia, 29 Oct. 2012. Web. 4 Nov. 2012.

QUESTIONS?

