Complexity Classes P and NP

MATH 3220
Supplemental Presentation

by John Aleshunas

The cure for boredom is curiosity. There
IS no cure for curiosity

-- Dorothy Parker

Computational Complexity Theory

O

In computer science, computational complexity theory is the
branch of the theory of computation that studies the resources, or
cost, of the computation required to solve a given computational
problem.

The relative computational difficulty of computable functions is the
subject matter of computational complexity.

Complexity theory analyzes the difficulty of computational problems in
terms of many different computational resources.

Example: Mowing grass has linear complexity because it takes double
the time to mow double the area. However, looking up something in a
dictionary has only logarithmic complexity because a double sized
dictionary only has to be opened one time more (e.g. exactly in the

middle - then the problem is reduced to the half).

Source: Wikipedia (Computatoinal
Complexity Theory)

Complexity Classes

=

O

=

A complexity class is the set of all of the computational
problems which can be solved using a certain amount of a
certain computational resource.

The complexity class P is the set of decision problems that can
be solved by a deterministic machine in polynomial time. This
class corresponds to an intuitive idea of the problems which
can be effectively solved in the worst cases.

The complexity class NP is the set of decision problems that
can be solved by a non-deterministic machine in polynomial
time. This class contains many problems that people would like
to be able to solve effectively. All the problems in this class
have the property that their solutions can be checked
effectively.

Source: Wikipedia (Computatoinal
Complexity Theory)

Complexity Classes (taxonomy)

/DeCiSion PrObIem\

Type 0 (recursively enumerable) Undecidable

Decidable

PSPACE

= ‘ PSPACE-Complete
Type 1 (context sensitive) NP

Co-NP \
P

N

P-Complete

Type 2 (context free)

T 3 (lar) Strict subset relationship
ype 3 (regular
Set equality is unknown

Source: Wikipedia (Complexity
Class)

Deterministic (Turing) Machine

=

Deterministic or Turing machines are extremely basic symbol-
manipulating devices which — despite their simplicity — can be
adapted to simulate the logic of any computer that could possibly
be constructed.

They were described in 1936 by Alan Turing. Though they were
intended to be technically feasible, Turing machines were not
meant to be a practical computing technology, but a thought
experiment about the limits of mechanical computation; thus they
were not actually constructed.

Studying their abstract properties yields many insights into
computer science and complexity theory.

Turing machines capture the informal notion of effective method in
logic and mathematics, and provide a precise definition of an
algorithm or 'mechanical procedure’.

Source: Wikipedia (Deterministic
Turing Machine)

Nondeterministic (Turing) Machine

O In theoretical computer science, a non-deterministic Turing machine
(NTM) is a Turing machine whose control mechanism works like a non-
deterministic finite automaton.

O An ordinary (deterministic) Turing machine (DTM) has a transition
function that, for a given state and symbol under the tape head,
specifies three things:

m the symbol to be written to the tape
B the direction (left or right) in which the head should move
B the subsequent state of the finite control

O An NTM differs in that the state and tape symbol no longer uniguely
specify these things - many different actions may apply for the same
combination of state and symbol.

Source: Wikipedia
(Nondeterministic Turing Machine)

Complexity Class P

O

P is the complexity class containing decision problems which can be solved by a
deterministic Turing machine using a polynomial amount of computation time, or
polynomial time.

P is often taken to be the class of computational problems which are "efficiently
solvable" or "tractable".

Problems that are solvable in theory, but cannot be solved in practice, are called
intractable.

There exist problems in P which are intractable in practical terms; for example,
some require at least n1000000 gperations.

P is known to contain many natural problems, including the decision
versions of linear programming, calculating the greatest common
divisor, and finding a maximum matching. In 2002, it was shown that
the problem of determining if a number is prime is in P.

Source: Wikipedia (P (complexity))

Complexity Class NP

O

In computational complexity theory, NP ("Non-deterministic Polynomial
time") is the set of decision problems solvable in polynomial time on a
non-deterministic Turing machine.

It is the set of problems that can be "verified" by a deterministic Turing
machine in polynomial time.

All the problems in this class have the property that their solutions can
be checked effectively.

This class contains many problems that people would like to be able to
solve effectively, including

B the Boolean satisfiability problem (SAT)
B the Hamiltonian path problem (special case of TSP)

B the Vertex cover problem.

Source: Wikipedia (NP
(complexity))

Complexity Class NP-Complete

O

In complexity theory, the NP-complete problems are the most difficult
problems in NP ("non-deterministic polynomial time") in the sense that they
are the ones most likely not to be in P.

If one could find a way to solve any NP-complete ﬁroblem quickly (in
polynomial time), then they could use that algorithm to solve all NP
problems quickly.

At present, all known algorithms for NP-complete problems require time
that is superpolynomial in the input size.

To solve an NP-complete problem for any nontrivial problem size, generally
one of the following approaches is used:

| Approximation
] Probabilistic

n Special cases
u Heuristic

Source: Wikipedia (NP-Complete)

Complexity Class NP-Complete (cont)

Some well-known problems that are NP-complete are:
u Boolean satisfiability problem (SAT)

N-puzzle

Knapsack problem

Hamiltonian cycle problem

Traveling salesman problem

Subgraph isomorphism problem

Subset sum problem

Cligue problem

Vertex cover problem

Independent set problem

Graph coloring problem

Minesweeper

Source: Wikipedia (NP-Complete)

Complexity Classes P and NP

NP Problems

Source: Wikipedia (Complexity
Classes P and NP)

Your Chance to be Famous

The question of whether P is the
same set as NP is the most
iImportant open question In
theoretical computer science. There
is even a $1,000,000 prize for
solving it.

Source: Wikipedia (Clay
Mathematics Insitute)

I'm never going to be famous. My name
will never be writ large on the roster
of Those Who Do Things. I don't do
any thing. Not one single thing. I
used to bite my nails, but I don't
even do that any more.

-- Dorothy Parker

References

i o AAA e RAAG i HAAAA0(

O

Computational Complexity Theory:
http://en.wikipedia.org/wiki/Computational_complexity_theory

Complexity Class: http://en.wikipedia.org/wiki/Complexity_class

Deterministic Turing Machine:
http://en.wikipedia.org/wiki/Deterministic_Turing_machine

Nondeterministic Turing Machine: http://en.wikipedia.org/wiki/Non-
deterministic_Turing_machine

P (complexity): http://en.wikipedia.org/wiki/P_%28complexity%29
NP (complexity): http://en.wikipedia.org/wiki/NP_%28complexity%29
NP-Complete: http://en.wikipedia.org/wiki/NP-complete

Complexity Classes P and NP:
http://en.wikipedia.org/wiki/Complexity_classes_P_and_NP

Clay Mathematics Insitute:
http://en.wikipedia.org/wiki/Clay_Mathematics_Institute

