Knapsack Problems
 MATH 3220
 By Nicole King

Outline

- Introduction
o Components
- Why the Knapsack Problem?
- Techniques
- Solving KP
- Variations

Introduction

Congratulations! You just won a trip to Hawai!!!

- Your Items:

Different Values and Different Costs

- How will you decide what to pack?

(Jennifer Huls Photography)

Components

(Wikipedia.com)
o Originates : Must fill knapsack with items that are most valuable

- Studied since 1897
- Mathematician Tobias Dantzig (1884-1956)
- Folklore

Components

Defining the Problem

The 0-1 Knapsack Problem:

- Need unique objects (one time use)

(Carol Hawkins Studios)
- Value for each object
- Cost for each object
> Problem Objective: Highest value within cost limit Example: Your house is on fire and must save your pets!

Why the Knapsack Problem?

o Useful to Real Life Problem Solving

> Determining least wasteful ways to cut raw materials
> Selection of capital investments
> Creation and scoring of tests

Techniques

oBranch and Bound

 oDynamic Programming oHybridizations of both
Solving KP

o Using Bounded Knapsack Problem:
> You were given one suitcase
> The capacity of this suitcase is 50 pounds
> You have to choose from the items listed to pack
> You may pack more than one item only if that item is listed twice

Solving KP

Item	Value	Cost (Weight)
Swim Suit	400	5 lbs.
Flip Flops	200	10 lbs.
Hair Dryer	350	20 lbs.
Camera	500	30 lbs.
Swim Suit	400	5 lbs.
Shorts	200	5 lbs.
High Heels	150	10 lbs.
Snorkel	150	5 lbs
Sunscreen	500	20 lbs.
Hat	300	10 lbs.

Solving KP

How do we choose what to pack?

Item	Value	Cost (Weight)
Swim Suit	400	5 lbs.
Flip Flops	200	10 lbs.
Hair Dryer	350	20 lbs.
Camera	500	30 lbs.
Swim Suit	400	5 lbs.
Shorts	200	5 lbs.
High Heels	150	10 lbs.
Snorkel	150	5 lbs
Sunscreen	500	20 lbs.
Hat	300	10 lbs.

Greedy Solution

-Choose the highest values within capacity first
-Results: Cost: 50 lbs. Value: 1000

Solving KP

o How do we choose what to pack?

Item	Value	Cost (Weight)
Swim Suit	400	5 lbs.
Flip Flops	200	10 lbs.
Hair Dryer	350	20 lbs.
Camera	500	30 lbs.
Swim Suit	400	5 lbs.
Shorts	200	5 lbs.
High Heels	150	10 lbs.
Snorkel	150	5 lbs
Sunscreen	500	20 lbs.
Hat	300	10 lbs.

Optimal Solution -Results: Cost: 50 lbs. Value: 1950

Variations

- 0-1 Knapsack Problem
o Bounded Knapsack Problem
- Unbounded Knapsack Problem
o Subset-sum Problem

Variations

- Change-making Problem
- 0-1 Multiple Knapsack Problem
- Generalized Assignment Problem
o Bin-packing Problem

Review

- Introduction
- Components
- Why the Knapsack Problem?
- Techniques
- Solving KP
- Variations

References

- Carol, H. (Artist). (n.d.). House on fire. [Web Drawing]. Retrieved from http://www.carolhawkins.com/illustration.shtml
- Dantzig, T. (1930). Numbers: The language of science.
- Huls, J. (Photographer). (2012). Vintage suitcase. [Print Photo]. Retrieved from http://www.123rf.com/photo_13942259_packed-vintage-suitcase-full-of-vacationitems.html
- Keller, P. \& Pisinger (2004). P. 3
- Knapsack problem. In (2012). Wikipedia. Retrieved from http://en.wikipedia.org/wiki/Knapsack_problem
- Martello, S., \& Toth, P. (1990). Knapsack problems: Algorithms and computer implementations. West Sussex, England: John Wiley \& Sons Ltd.
- Mathews, G. (1897). On the partition of numbers. Proceedings of the London Mathematical Society, 28, 486-490.
- Six mistakes when asking questions. (2012). [Print Photo]. Retrieved from http://www.pickthebrain.com/blog/do-you-make-these-6-mistakes-when-askingquestions/

Questions?

(Six Mistakes When Asking Questions)

