KNAPSACK PROBLEMS: What Can A Beautiful Dancer Fit In Her Dance Bag? By: Tara Webb

Overview: Can I Fit It All In?

- What is a Knapsack Problem?
- Basic Mathematic Form
- Types of Knapsack Problems
- How are they solved?
- Examples
- Why do we care about KP?

What is a Knapsack Problem?

- Suppose a beautiful dancer, let's just say Tara for our purposes, needs to fill her dance bag for the day.
- She can choose from various items that will maximize her comfort for the day.
- How does she do this?

Mathematically Speaking... In Its Most Basic Form:

Maximize:

Subject to:

- $P_j = profit$
- W_i = weight
- W = max weight that can be in bag

for all:

$$\sum_{j=1}^{n} p_j x_j$$
$$\sum_{j=1}^{n} w_j x_j \le W,$$

$$x_j \in \{0,1\}$$

 $1 \le j \le n$

Types of Knapsack Problems:

- 0-1 KP
- Bounded KP
- Unbounded KP
- Subset-Sum Problem
- Multiple Choice KP
- Multiple KP

How Is It Solved? This Dancer is Confused.

- KP is NP-Complete.
- KP can be solved in pseudo-polynomial time using dynamic programming.
- Martello and Toth proposed a Greedy Approximation Algorithm to solve KP

Dynamic Programming Solution

- Consists of considering i stages and computing at each stage n > 1 recursive values given costs c₁...c_n and corresponding values v₁...v_n.
- We want to maximize the total value subject to the constraint that total cost < C.
- For each i ≤ C, define A(i) to be the maximum value that can be attained with total cost less than or equal to i.
- Tabulating the results A(0) up through A(C) gives the solution.

Greedy Approximation Algorithm

- Sorts the essentials in decreasing order
- Inserts them into the sack starting with the first and greatest element
- Inserts until there is no longer space for more
- If k is the maximum number of essentials that can fit, the algorithm is guaranteed to insert at least k/2 of them

Why Do We Care?

- KP have been intensively studied in the last decade attracting theorists and practicians
- An impressive amount of research has been published
- These problems can model many industrial situations:
 - Capital Budgeting
 - Cargo Loading
 - Cutting Stock

Why Do We Care? Cont'd

- Subset sum has been used in cryptography.
- However, Merkle-Hellman and several similar algorithms created to solve subset sum were broken because they were solvable in polynomial time.
- KP is also used in combinatorics, applied mathematics, and complexity theory.

The Beautiful Dancer is Happy!

 She is dancing with happiness because she can get the most out of the day by what is in her dance bag!

References:

- Martello, Silvano, and Toth, Paolo. Knapsack Problems: Algorithms and Computer Implementations. 1990. England: John Wiley and Sons, Ltd.
- Dynamic Programming. Retrieved October 18, 2006, from http://en.wikipedia.org/wiki/Dynamic_programming
- Knapsack Problem. Retrieved October 18, 2006, from <u>http://en.wikipedia.org/wiki/Knapsack_problem</u>
- List of Knapsack Problems. Retrieved October 18, 2006, from <u>http://en.wikipedia.org/wiki/List_of_knapsack_problems</u>
- NP-Complete. Retrieved October 18, 2006, from <u>http://en.wikipedia.org/wiki/NP-complete</u>
- Pseudo-Polynomial Time. Retrieved October 18, 2006, from <u>http://en.wikipedia.org/wiki/Pseudo-polynomial_time</u>