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Problem Description 

For this problem, I will be taking a dataset consisting of 2000 movie reviews from IMBD, and 

seeing if the machine is capable of using sentiment analysis to properly predict whether the 

reviews are positive or negative by looking at the words used in each review. I will be using 

Naive Bayes classification to classify the reviews according to their overall sentiment 

(positive/negative). 

Background: 

In this problem I will be using sentiment analysis to extract or categorize the sentiment content 

of a piece of sample text. Sentiment analysis is the use of statistics, natural language processing 

and machine learning to extract or categorize the sentiment content of a piece of sample text. 

Sentiment analysis is a type of document or text classification, which is assigning a document to 

one or more classes or categories. This may be done "manually" (or "intellectually") or 

algorithmically (Katti). Documents may be classified according to their subjects or according to 

other attributes (such as document type, author, printing year etc.). Unfortunately, sentiment 

analysis is a field that is kind of touchy feely, which makes it somewhat difficult for computers 

to accurately compute the results sometimes. In this experiment, I will simply be seeing if the 

machine can accurately predict whether a movie review is positive or negative based on the 

words used in it. Generally speaking, sentiment analysis isn’t something that’s usually simple 

enough to divide the results into a simple yes or no like I will be doing, which may cause the 

results to be inaccurate. I will also be using multinomial Naive Bayes classification algorithm to 

classify 2000 movie reviews according to their overall sentiment (positive/negative). The Naive 



Bayes classification is based on the Bayes’ theorem in statistics. The theorem describes the 

probability of an event, based on prior knowledge of conditions that might be related to the event 

(An Intuitive). Naive Bayes is a simple technique for constructing classifiers: models that assign 

class labels to problem instances, represented as vectors of feature values, where the class labels 

are drawn from some finite set. All naive Bayes classifiers assume that the value of a particular 

feature is independent of the value of any other feature, given the class variable (Naive Bayes 

Classifier). With a multinomial event model, samples (feature vectors) represent the frequencies 

with which certain events have been generated by a multinomial (𝑝1, … … , 𝑝𝑛) where 𝑝𝑖 is the 

probability that event i occurs (or K such multinomials in the multiclass case). A feature vector 

𝑥 = ( 𝑥1, . . . . . , 𝑥𝑛) is then a histogram, with 𝑥𝑖 counting the number of times event i was 

observed in a particular instance. This is the event model typically used for document 

classification, with events representing the occurrence of a word in a single document. The 

likelihood of observing a histogram x is given by 
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I will be using bag of words as the representation in this problem. In this model, a text (such as a 

sentence or a document) is represented as the bag (multiset) of its words, disregarding grammar 

and even word order but keeping multiplicity. This is typically used to create a list of each word 

and how frequently it is used (Brownlee).  

 

Methodology: 

In this experiment I will be importing the data set into R then using the documents to create a 

corpus. After this, I will clean the corpus by removing stop words, punctuation, etc… I will then 



create a document term matrix using the corpus, then remove words that are not used frequently 

to make it easier. I will be using 1500 of the reviews as the training data, and the remaining 500 

to test the machine. After both training and testing using the corpus and the document term 

matrix, I will create a table to see the predictions the machine made versus the actual results. 

Finally, I will create a confusion matrix and observe it to see how accurate the machine really is. 

 

Assumptions: 

The biggest assumption that I am making in this experiment is that the machine is capable of 

sentiment analysis to some extent. Since sentiment analysis usually takes a lot of time to sit 

through and analyze each document, having the machine go through and do this process in rapid 

succession may make lead the machine to being less accurate than a normal human would be.  

 

Experimental Design: 

In this problem I will be using the bag of words representation and training a multinomial Naive 

Bayes classifier on the data and testing the model’s performance on a hold-out set. The data set is 

a set of 2000 movie reviews put together by Pang and Lee. The general process begins by 

randomizing the dataset. In this approach, I will represent each word in a document as a token 

(or feature) and each document as a vector of features. In addition, for simplicity, I will disregard 

word order and focus only on the number of occurrences of each word i.e., I will represent each 

document as a multi-set ‘bag’ of words. First I will create a corpus of all the documents in the 

dataset, then I will clean up the corpus by eliminating numbers, punctuation, white space, and by 

converting to lowercase. I will also be discarding common stop words such as “his”, “our”, and 

“couldn’t”. I will represent the bag of words tokens with a document term matrix (DTM). The 



rows of the DTM correspond to documents in the collection, columns correspond to terms, and 

its elements are the term frequencies. I will use a built-in function from the ‘tm’ package to 

create the DTM. Next, I will create 75:25 partitions of the data frame, corpus and document term 

matrix for training and testing purposes. The DTM contains a large number of features but not all 

of them will be useful for classification. I will be reducing the number of features by ignoring 

words which appear in less than five reviews. To do this, I will use ‘findFreqTerms’ function to 

identify the frequent words. I will then restrict the DTM to use only the frequent words using the 

‘dictionary’ option. I will use a variation of the multinomial Naive Bayes algorithm known as 

binarized (boolean feature) Naive Bayes due to Dan Jurafsky. In this method, the term 

frequencies are replaced by Boolean presence/absence features. The logic behind this being that 

for sentiment classification, word occurrence matters more than word frequency. To train the 

model I will use the naiveBayes function from the ‘e1071’ package. Since Naive Bayes evaluates 

products of probabilities, I need some way of assigning non-zero probabilities to words which do 

not occur in the sample. I will use Laplace 1 smoothing to this end. I will then test the 

predictions and look at the confusion matrix to see how accurate the machine is. 

 

Results and Discussion: 

For this experiment, I decided to do the computations three times with three different 

randomized seeds. I will be documenting the results of each of these three attempts. 

Results of the first attempt: 

For the first try, I set the seed to 98. After randomizing the order of the documents, I created a 

corpus with them. I then used dplyr’s %>% (pipe) utility to clean the corpus. This function 

removes punctuation, numbers, capital letters, white space, and the most common stop words in 



the English language. Next, I created a document term matrix using the corpus then inspected it. 

I specifically looked at only 6 terms spread across 11 documents. It found the sparsity to be 65%. 

After this, I create 75:25 partitions of the dataframe, corpus and document term matrix for 

training and testing purposes. Inspecting the document term matrix again, I see that there are 

38957 features. Most of these are not going to be useful, so I decided to reduce this number by 

ignoring words that occurred in less than five reviews. I then used the findFreqTerms function to 

identify the frequent terms, then recreate the document term matrix with only these words. Now 

it finds that there are 12129 features. I then use a variation of the multinomial Naive Bayes 

algorithm known as binarized (boolean feature) Naive Bayes due to Dan Jurafsky. In this 

method, the term frequencies are replaced by Boolean presence/absence features. The logic 

behind this being that for sentiment classification, word occurrence matters more than word 

frequency. After this I apply this new function to get the final training and testing document term 

matrices. I then train the machine using 1500 of the reviews as the training set. It took roughly 3 

seconds for the machine to complete the training. Next is testing if the machine can predict 

properly. This function took 143 seconds to complete this time. I created a prediction vs. actual 

table, which looked like this: 

 Actual  

Predictions Negative Positive 

Negative 81 68 

Positive 179 172 

 

It predicted that there were 149 negative reviews, 81 of which were actually negative and 68 that 

were actually positive. It also predicted that there were 351 positive reviews, 172 of which were 



actually positive and 179 that were actually negative. According to the confusion matrix, the 

accuracy of this is 50.6% 

Results of the second attempt: 

For this attempt, I set the seed to 402 and started over again. After creating the corpus and the 

document term matrix, it found the sparsity to be 88%. Again, there were 38957 features in the 

document term matrix before reducing the number of words. After restricting it to the most 

frequent words, there were 12116. Training the machine took 3 seconds again, but testing it only 

122 seconds this time. The prediction vs. actual was as follows: 

 Actual  

Predictions Negative Positive 

Negative 69 58 

Positive 188 185 

 

It predicted that there were 127 negative reviews, 69 of which were actually negative, and 58 that 

were actually positive. It also predicted that there were 373 positive reviews, 185 of which were 

actually positive, and 188 that were actually negative. According to the confusion matrix, the 

accuracy of this attempt was 50.8%. 

Results of the third attempt: 

For this final attempt, I used 1 as the seed. After creating the corpus and document term matrix, 

the machine found the sparsity to be 83%. Again, it found there to be 38957 features in the 

matrix before I reduced the words. After restricting the matrix down to only the frequent words, 

there were 12083 features. Training the machine took 3 seconds again, and testing it took 122 

seconds. The prediction vs. actual table was as follows: 



 Actual  

Predictions Negative Positive 

Negative 88 93 

Positive 153 166 

 

It predicted that there were 181 negative reviews, 88 of which were actually negative, and 93 that 

were actually positive. It also predicted that there were 319 positive reviews, 166 of which were 

actually positive, and 153 that were actually negative. According to the confusion matrix, the 

accuracy of this is 50.8%. 

Discussion: 

The first thing that I would like to call attention to is that somehow between the three attempts, 

the machine found a different number of frequent terms each time. They were all relatively 

similar, but they were somehow different, even though they should have been the same each 

time. I do not think that the different was enough to change the end results, but I thought it was 

interesting enough to point out. Something else I found interesting was that the first attempt took 

approximately 20 seconds longer to test than the second and third attempt. Again, I don’t think 

that this affected the results, but I thought it was interesting. It seems that in every attempt, the 

machine predicted that there were almost twice as many positive reviews as negative. It is 

possible that this is caused by some common negative words such as ‘not’ and ‘no’ being 

removed for being stop words. Each result had roughly the same accuracy at about 50.8%. 

Frankly, I was certainly hoping for a higher accuracy number, but this result does not surprise 

me, since I am not very adept at coding this kind of stuff, and the machine probably won’t do a 

good job of sentiment analysis without much more fine tuning anyway.  

 



Issues: 

My biggest issue was the same as every other experiment, which is that I am not familiar with 

much of the code needed to do this experiment. I still don’t fully understand all of the code that I 

used to do this project, which may be why the results aren’t super great.  

 

Conclusions and Future Work: 

Unfortunately, it seems that my code does not make for a very good predictor of whether a 

movie review is positive or negative. Being just above 50% accuracy, you may as well just flip a 

coin instead. The most obvious future work would be to somehow refine the code to see if it’s 

possible to make the predictions more accurate. Aside from this, other work could include trying 

to create a scale for results, rather than just negative or positive. Perhaps trying to see if the 

machine could accurately predict a movie review on a scale from 1 to 10 would be interesting 

future work. 
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