
INTRUDERS
20.1 Intruders

Intruder Behavior Patterns
Intrusion Techniques

20.2 Intrusion Detection

Audit Records
Statistical Anomaly Detection
Rule-Based Intrusion Detection
The Base-Rate Fallacy
Distributed Intrusion Detection
Honeypots
Intrusion Detection Exchange Format

20.3 Password Management

Password Protection
Password Selection Strategies

20.4 Recommended Reading and Web Sites

20.5 Key Terms, Review Questions, and Problems

Appendix 20A The Base-Rate Fallacy

20-1

CHAPTER

PART 6: SYSTEM SECURITY

M21_STAL7044_05_SE_C20.QXD 12/3/09 12:46 PM Page 20-1

20-2 CHAPTER 20 / INTRUDERS

They agreed that Graham should set the test for Charles Mabledene. It was nei-
ther more nor less than that Dragon should get Stern’s code. If he had the ‘in’ at
Utting which he claimed to have this should be possible, only loyalty to Moscow
Centre would prevent it. If he got the key to the code he would prove his loyalty
to London Central beyond a doubt.

—Talking to Strange Men, Ruth Rendell

KEY POINTS

! Unauthorized intrusion into a computer system or network is one of the
most serious threats to computer security.

! Intrusion detection systems have been developed to provide early warning
of an intrusion so that defensive action can be taken to prevent or mini-
mize damage.

! Intrusion detection involves detecting unusual patterns of activity or
patterns of activity that are known to correlate with intrusions.

! One important element of intrusion prevention is password management,
with the goal of preventing unauthorized users from having access to the
passwords of others.

A significant security problem for networked systems is hostile, or at least
unwanted, trespass by users or software. User trespass can take the form of unau-
thorized logon to a machine or, in the case of an authorized user, acquisition of priv-
ileges or performance of actions beyond those that have been authorized. Software
trespass can take the form of a virus, worm, or Trojan horse.

All these attacks relate to network security because system entry can be
achieved by means of a network. However, these attacks are not confined to net-
work-based attacks. A user with access to a local terminal may attempt trespass
without using an intermediate network. A virus or Trojan horse may be introduced
into a system by means of an optical disc. Only the worm is a uniquely network phe-
nomenon.Thus, system trespass is an area in which the concerns of network security
and computer security overlap.

Because the focus of this book is network security, we do not attempt a com-
prehensive analysis of either the attacks or the security countermeasures related
to system trespass. Instead, in this Part we present a broad overview of these
concerns.

This chapter covers the subject of intruders. First, we examine the nature of
the attack and then look at strategies intended for prevention and, failing that,
detection. Next we examine the related topic of password management.

M21_STAL7044_05_SE_C20.QXD 12/3/09 12:46 PM Page 20-2

20.1 / INTRUDERS 20-3

20.1 INTRUDERS

One of the two most publicized threats to security is the intruder (the other is
viruses), often referred to as a hacker or cracker. In an important early study of
intrusion, Anderson [ANDE80] identified three classes of intruders:

• Masquerader: An individual who is not authorized to use the computer and
who penetrates a system’s access controls to exploit a legitimate user’s account

• Misfeasor: A legitimate user who accesses data, programs, or resources for
which such access is not authorized, or who is authorized for such access but
misuses his or her privileges

• Clandestine user: An individual who seizes supervisory control of the system
and uses this control to evade auditing and access controls or to suppress audit
collection

The masquerader is likely to be an outsider; the misfeasor generally is an insider;
and the clandestine user can be either an outsider or an insider.

Intruder attacks range from the benign to the serious.At the benign end of the
scale, there are many people who simply wish to explore internets and see what is
out there. At the serious end are individuals who are attempting to read privileged
data, perform unauthorized modifications to data, or disrupt the system.

[GRAN04] lists the following examples of intrusion:

• Performing a remote root compromise of an e-mail server
• Defacing a Web server
• Guessing and cracking passwords
• Copying a database containing credit card numbers
• Viewing sensitive data, including payroll records and medical information,

without authorization
• Running a packet sniffer on a workstation to capture usernames and pass-

words
• Using a permission error on an anonymous FTP server to distribute pirated

software and music files
• Dialing into an unsecured modem and gaining internal network access
• Posing as an executive, calling the help desk, resetting the executive’s e-mail

password, and learning the new password
• Using an unattended, logged-in workstation without permission

Intruder Behavior Patterns

The techniques and behavior patterns of intruders are constantly shifting, to exploit
newly discovered weaknesses and to evade detection and countermeasures. Even
so, intruders typically follow one of a number of recognizable behavior patterns, and
these patterns typically differ from those of ordinary users. In the following, we look

M21_STAL7044_05_SE_C20.QXD 12/3/09 12:46 PM Page 20-3

20-4 CHAPTER 20 / INTRUDERS

Table 20.1 Some Examples of Intruder Patterns of Behavior
(a) Hacker

1. Select the target using IP lookup tools such as NSLookup, Dig, and others.

2. Map network for accessible services using tools such as NMAP.

3. Identify potentially vulnerable services (in this case, pcAnywhere).

4. Brute force (guess) pcAnywhere password.

5. Install remote administration tool called DameWare.

6. Wait for administrator to log on and capture his password.

7. Use that password to access remainder of network.

(b) Criminal Enterprise

1. Act quickly and precisely to make their activities harder to detect.

2. Exploit perimeter through vulnerable ports.

3. Use Trojan horses (hidden software) to leave back doors for reentry.

4. Use sniffers to capture passwords.

5. Do not stick around until noticed.

6. Make few or no mistakes.

(c) Internal Threat

1. Create network accounts for themselves and their friends.

2. Access accounts and applications they wouldn’t normally use for their daily jobs.

3. E-mail former and prospective employers.

4. Conduct furtive instant-messaging chats.

5. Visit Web sites that cater to disgruntled employees, such as f’dcompany.com.

6. Perform large downloads and file copying.

7. Access the network during off hours.

at three broad examples of intruder behavior patterns, to give the reader some feel
for the challenge facing the security administrator. Table 20.1, based on [RADC04],
summarizes the behavior.

HACKERS Traditionally, those who hack into computers do so for the thrill of it or
for status. The hacking community is a strong meritocracy in which status is
determined by level of competence. Thus, attackers often look for targets of
opportunity and then share the information with others. A typical example is a
break-in at a large financial institution reported in [RADC04]. The intruder took
advantage of the fact that the corporate network was running unprotected services,
some of which were not even needed. In this case, the key to the break-in was the
pcAnywhere application. The manufacturer, Symantec, advertises this program as a
remote control solution that enables secure connection to remote devices. But the
attacker had an easy time gaining access to pcAnywhere; the administrator used the
same three-letter username and password for the program. In this case, there was no
intrusion detection system on the 700-node corporate network. The intruder was
only discovered when a vice president walked into her office and saw the cursor
moving files around on her Windows workstation.

M21_STAL7044_05_SE_C20.QXD 12/3/09 12:46 PM Page 20-4

20.1 / INTRUDERS 20-5

Benign intruders might be tolerable, although they do consume resources and
may slow performance for legitimate users. However, there is no way in advance to
know whether an intruder will be benign or malign. Consequently, even for systems
with no particularly sensitive resources, there is a motivation to control this problem.

Intrusion detection systems (IDSs) and intrusion prevention systems (IPSs)
are designed to counter this type of hacker threat. In addition to using such systems,
organizations can consider restricting remote logons to specific IP addresses and/or
use virtual private network technology.

One of the results of the growing awareness of the intruder problem has been
the establishment of a number of computer emergency response teams (CERTs).
These cooperative ventures collect information about system vulnerabilities and
disseminate it to systems managers. Hackers also routinely read CERT reports.
Thus, it is important for system administrators to quickly insert all software patches
to discovered vulnerabilities. Unfortunately, given the complexity of many IT
systems, and the rate at which patches are released, this is increasingly difficult to
achieve without automated updating. Even then, there are problems caused by
incompatibilities resulting from the updated software. Hence the need for multiple
layers of defense in managing security threats to IT systems.

CRIMINALS Organized groups of hackers have become a widespread and common
threat to Internet-based systems. These groups can be in the employ of a corpo-
ration or government but often are loosely affiliated gangs of hackers. Typically,
these gangs are young, often Eastern European, Russian, or southeast Asian
hackers who do business on the Web [ANTE06]. They meet in underground forums
with names like DarkMarket.org and theftservices.com to trade tips and data and
coordinate attacks. A common target is a credit card file at an e-commerce server.
Attackers attempt to gain root access. The card numbers are used by organized
crime gangs to purchase expensive items and are then posted to carder sites, where
others can access and use the account numbers; this obscures usage patterns and
complicates investigation.

Whereas traditional hackers look for targets of opportunity, criminal hackers
usually have specific targets, or at least classes of targets in mind. Once a site is pene-
trated, the attacker acts quickly, scooping up as much valuable information as possi-
ble and exiting.

IDSs and IPSs can also be used for these types of attackers, but may be less
effective because of the quick in-and-out nature of the attack. For e-commerce
sites, database encryption should be used for sensitive customer information, espe-
cially credit cards. For hosted e-commerce sites (provided by an outsider service),
the e-commerce organization should make use of a dedicated server (not used to
support multiple customers) and closely monitor the provider’s security services.

INSIDER ATTACKS Insider attacks are among the most difficult to detect and prevent.
Employees already have access and knowledge about the structure and content of
corporate databases. Insider attacks can be motivated by revenge or simply a feeling
of entitlement. An example of the former is the case of Kenneth Patterson, fired
from his position as data communications manager for American Eagle Outfitters.
Patterson disabled the company’s ability to process credit card purchases during
five days of the holiday season of 2002. As for a sense of entitlement, there have

M21_STAL7044_05_SE_C20.QXD 12/3/09 12:46 PM Page 20-5

20-6 CHAPTER 20 / INTRUDERS

always been many employees who felt entitled to take extra office supplies for
home use, but this now extends to corporate data. An example is that of a vice
president of sales for a stock analysis firm who quit to go to a competitor. Before she
left, she copied the customer database to take with her. The offender reported
feeling no animus toward her former employee; she simply wanted the data because
it would be useful to her.

Although IDS and IPS facilities can be useful in countering insider attacks,
other more direct approaches are of higher priority. Examples include the following:

• Enforce least privilege, only allowing access to the resources employees need
to do their job.

• Set logs to see what users access and what commands they are entering.
• Protect sensitive resources with strong authentication.
• Upon termination, delete employee’s computer and network access.
• Upon termination, make a mirror image of employee’s hard drive before reis-

suing it. That evidence might be needed if your company information turns up
at a competitor.

In this section, we look at the techniques used for intrusion. Then we examine
ways to detect intrusion.

Intrusion Techniques

The objective of the intruder is to gain access to a system or to increase the range of
privileges accessible on a system. Most initial attacks use system or software vulner-
abilities that allow a user to execute code that opens a back door into the system.
Alternatively, the intruder attempts to acquire information that should have been
protected. In some cases, this information is in the form of a user password. With
knowledge of some other user’s password, an intruder can log in to a system and
exercise all the privileges accorded to the legitimate user.

Typically, a system must maintain a file that associates a password with each
authorized user. If such a file is stored with no protection, then it is an easy matter to
gain access to it and learn passwords. The password file can be protected in one of
two ways:

• One-way function: The system stores only the value of a function based on the
user’s password. When the user presents a password, the system transforms
that password and compares it with the stored value. In practice, the system
usually performs a one-way transformation (not reversible) in which the
password is used to generate a key for the one-way function and in which a
fixed-length output is produced.

• Access control: Access to the password file is limited to one or a very few
accounts.

If one or both of these countermeasures are in place, some effort is needed for
a potential intruder to learn passwords. On the basis of a survey of the literature and

M21_STAL7044_05_SE_C20.QXD 12/3/09 12:46 PM Page 20-6

20.1 / INTRUDERS 20-7

interviews with a number of password crackers, [ALVA90] reports the following
techniques for learning passwords:

1. Try default passwords used with standard accounts that are shipped with the
system. Many administrators do not bother to change these defaults.

2. Exhaustively try all short passwords (those of one to three characters).
3. Try words in the system’s online dictionary or a list of likely passwords. Examples

of the latter are readily available on hacker bulletin boards.
4. Collect information about users, such as their full names, the names of their

spouse and children, pictures in their office, and books in their office that are
related to hobbies.

5. Try users’ phone numbers, Social Security numbers, and room numbers.
6. Try all legitimate license plate numbers for this state.
7. Use a Trojan horse (described in Chapter 21) to bypass restrictions on access.
8. Tap the line between a remote user and the host system.

The first six methods are various ways of guessing a password. If an intruder has
to verify the guess by attempting to log in, it is a tedious and easily countered means of
attack. For example, a system can simply reject any login after three password attempts,
thus requiring the intruder to reconnect to the host to try again. Under these circum-
stances, it is not practical to try more than a handful of passwords. However, the
intruder is unlikely to try such crude methods. For example, if an intruder can gain
access with a low level of privileges to an encrypted password file, then the strategy
would be to capture that file and then use the encryption mechanism of that particular
system at leisure until a valid password that provided greater privileges was discovered.

Guessing attacks are feasible, and indeed highly effective, when a large num-
ber of guesses can be attempted automatically and each guess verified, without the
guessing process being detectable. Later in this chapter, we have much to say about
thwarting guessing attacks.

The seventh method of attack listed earlier, the Trojan horse, can be particularly
difficult to counter. An example of a program that bypasses access controls was cited
in [ALVA90]. A low-privilege user produced a game program and invited the system
operator to use it in his or her spare time.The program did indeed play a game, but in
the background it also contained code to copy the password file, which was unen-
crypted but access protected, into the user’s file. Because the game was running under
the operator’s high-privilege mode, it was able to gain access to the password file.

The eighth attack listed, line tapping, is a matter of physical security.
Other intrusion techniques do not require learning a password. Intruders can

get access to a system by exploiting attacks such as buffer overflows on a program
that runs with certain privileges. Privilege escalation can be done this way as well.

We turn now to a discussion of the two principal countermeasures: detection
and prevention. Detection is concerned with learning of an attack, either before or
after its success. Prevention is a challenging security goal and an uphill battle at all
times.The difficulty stems from the fact that the defender must attempt to thwart all
possible attacks, whereas the attacker is free to try to find the weakest link in the
defense chain and attack at that point.

M21_STAL7044_05_SE_C20.QXD 12/3/09 12:46 PM Page 20-7

20-8 CHAPTER 20 / INTRUDERS

20.2 INTRUSION DETECTION

Inevitably, the best intrusion prevention system will fail. A system’s second line of
defense is intrusion detection, and this has been the focus of much research in
recent years. This interest is motivated by a number of considerations, including the
following:

1. If an intrusion is detected quickly enough, the intruder can be identified and
ejected from the system before any damage is done or any data are compro-
mised. Even if the detection is not sufficiently timely to preempt the intruder,
the sooner that the intrusion is detected, the less the amount of damage and
the more quickly that recovery can be achieved.

2. An effective intrusion detection system can serve as a deterrent, so acting to pre-
vent intrusions.

3. Intrusion detection enables the collection of information about intrusion tech-
niques that can be used to strengthen the intrusion prevention facility.

Intrusion detection is based on the assumption that the behavior of the
intruder differs from that of a legitimate user in ways that can be quantified. Of
course, we cannot expect that there will be a crisp, exact distinction between an
attack by an intruder and the normal use of resources by an authorized user. Rather,
we must expect that there will be some overlap.

Figure 20.1 suggests, in very abstract terms, the nature of the task confronting
the designer of an intrusion detection system. Although the typical behavior of an

Overlap in observed
or expected behavior

Profile of
intruder behavior

Profile of
authorized user

behavior

Measurable behavior
parameter

Average behavior
of intruder

Average behavior
of authorized user

Probability
density function

Figure 20.1 Profiles of Behavior of Intruders and Authorized Users

M21_STAL7044_05_SE_C20.QXD 12/3/09 12:46 PM Page 20-8

20.2 / INTRUSION DETECTION 20-9

intruder differs from the typical behavior of an authorized user, there is an overlap
in these behaviors.Thus, a loose interpretation of intruder behavior, which will catch
more intruders, will also lead to a number of “false positives,” or authorized users
identified as intruders. On the other hand, an attempt to limit false positives by a
tight interpretation of intruder behavior will lead to an increase in false negatives, or
intruders not identified as intruders. Thus, there is an element of compromise and
art in the practice of intrusion detection.

In Anderson’s study [ANDE80], it was postulated that one could, with reason-
able confidence, distinguish between a masquerader and a legitimate user. Patterns
of legitimate user behavior can be established by observing past history, and signifi-
cant deviation from such patterns can be detected. Anderson suggests that the task
of detecting a misfeasor (legitimate user performing in an unauthorized fashion) is
more difficult, in that the distinction between abnormal and normal behavior may
be small. Anderson concluded that such violations would be undetectable solely
through the search for anomalous behavior. However, misfeasor behavior might
nevertheless be detectable by intelligent definition of the class of conditions that
suggest unauthorized use. Finally, the detection of the clandestine user was felt to be
beyond the scope of purely automated techniques. These observations, which were
made in 1980, remain true today.

[PORR92] identifies the following approaches to intrusion detection:

1. Statistical anomaly detection: Involves the collection of data relating to the
behavior of legitimate users over a period of time. Then statistical tests
are applied to observed behavior to determine with a high level of confidence
whether that behavior is not legitimate user behavior.

a. Threshold detection: This approach involves defining thresholds, inde-
pendent of user, for the frequency of occurrence of various events.

b. Profile based: A profile of the activity of each user is developed and used
to detect changes in the behavior of individual accounts.

2. Rule-based detection: Involves an attempt to define a set of rules that can be
used to decide that a given behavior is that of an intruder.

a. Anomaly detection: Rules are developed to detect deviation from previ-
ous usage patterns.

b. Penetration identification: An expert system approach that searches for
suspicious behavior.

In a nutshell, statistical approaches attempt to define normal, or expected, behavior,
whereas rule-based approaches attempt to define proper behavior.

In terms of the types of attackers listed earlier, statistical anomaly detection is
effective against masqueraders, who are unlikely to mimic the behavior patterns of
the accounts they appropriate. On the other hand, such techniques may be unable to
deal with misfeasors. For such attacks, rule-based approaches may be able to recog-
nize events and sequences that, in context, reveal penetration. In practice, a system
may exhibit a combination of both approaches to be effective against a broad range
of attacks.

M21_STAL7044_05_SE_C20.QXD 12/3/09 12:46 PM Page 20-9

20-10 CHAPTER 20 / INTRUDERS

Audit Records

A fundamental tool for intrusion detection is the audit record. Some record of
ongoing activity by users must be maintained as input to an intrusion detection
system. Basically, two plans are used:

• Native audit records: Virtually all multiuser operating systems include
accounting software that collects information on user activity. The advantage
of using this information is that no additional collection software is needed.
The disadvantage is that the native audit records may not contain the needed
information or may not contain it in a convenient form.

• Detection-specific audit records: A collection facility can be implemented that
generates audit records containing only that information required by the
intrusion detection system. One advantage of such an approach is that it could
be made vendor independent and ported to a variety of systems. The disad-
vantage is the extra overhead involved in having, in effect, two accounting
packages running on a machine.

A good example of detection-specific audit records is one developed by
Dorothy Denning [DENN87]. Each audit record contains the following fields:

• Subject: Initiators of actions. A subject is typically a terminal user but might
also be a process acting on behalf of users or groups of users.All activity arises
through commands issued by subjects. Subjects may be grouped into different
access classes, and these classes may overlap.

• Action: Operation performed by the subject on or with an object; for example,
login, read, perform I/O, execute.

• Object: Receptors of actions. Examples include files, programs, messages,
records, terminals, printers, and user- or program-created structures. When a
subject is the recipient of an action, such as electronic mail, then that subject is
considered an object. Objects may be grouped by type. Object granularity may
vary by object type and by environment. For example, database actions may be
audited for the database as a whole or at the record level.

• Exception-Condition: Denotes which, if any, exception condition is raised on
return.

• Resource-Usage: A list of quantitative elements in which each element gives
the amount used of some resource (e.g., number of lines printed or displayed,
number of records read or written, processor time, I/O units used, session
elapsed time).

• Time-Stamp: Unique time-and-date stamp identifying when the action took
place.

Most user operations are made up of a number of elementary actions. For
example, a file copy involves the execution of the user command, which includes
doing access validation and setting up the copy, plus the read from one file, plus the
write to another file. Consider the command

COPY GAME.EXE TO <Libray>GAME.EXE

M21_STAL7044_05_SE_C20.QXD 12/3/09 12:46 PM Page 20-10

20.2 / INTRUSION DETECTION 20-11

issued by Smith to copy an executable file GAME from the current directory to the
<Library> directory. The following audit records may be generated:

In this case, the copy is aborted because Smith does not have write permission to
<Library>.

The decomposition of a user operation into elementary actions has three
advantages:

1. Because objects are the protectable entities in a system, the use of elementary
actions enables an audit of all behavior affecting an object. Thus, the system
can detect attempted subversions of access controls (by noting an abnormal-
ity in the number of exception conditions returned) and can detect successful
subversions by noting an abnormality in the set of objects accessible to the
subject.

2. Single-object, single-action audit records simplify the model and the implemen-
tation.

3. Because of the simple, uniform structure of the detection-specific audit
records, it may be relatively easy to obtain this information or at least part of
it by a straightforward mapping from existing native audit records to the
detection-specific audit records.

Statistical Anomaly Detection

As was mentioned, statistical anomaly detection techniques fall into two broad
categories: threshold detection and profile-based systems. Threshold detection
involves counting the number of occurrences of a specific event type over an inter-
val of time. If the count surpasses what is considered a reasonable number that one
might expect to occur, then intrusion is assumed.

Threshold analysis, by itself, is a crude and ineffective detector of even moder-
ately sophisticated attacks. Both the threshold and the time interval must be deter-
mined. Because of the variability across users, such thresholds are likely to generate
either a lot of false positives or a lot of false negatives. However, simple threshold
detectors may be useful in conjunction with more sophisticated techniques.

Profile-based anomaly detection focuses on characterizing the past behavior
of individual users or related groups of users and then detecting significant devia-
tions. A profile may consist of a set of parameters, so that deviation on just a single
parameter may not be sufficient in itself to signal an alert.

The foundation of this approach is an analysis of audit records. The audit
records provide input to the intrusion detection function in two ways. First, the
designer must decide on a number of quantitative metrics that can be used to mea-
sure user behavior.An analysis of audit records over a period of time can be used to

Smith execute <Library>COPY.EXE 0 CPU = 00002 11058721678

Smith read <Smith>GAME.EXE 0 RECORDS = 0 11058721679

Smith execute <Library>COPY.EXE write-viol RECORDS = 0 11058721680

M21_STAL7044_05_SE_C20.QXD 12/3/09 12:46 PM Page 20-11

20-12 CHAPTER 20 / INTRUDERS

determine the activity profile of the average user. Thus, the audit records serve to
define typical behavior. Second, current audit records are the input used to detect
intrusion. That is, the intrusion detection model analyzes incoming audit records to
determine deviation from average behavior.

Examples of metrics that are useful for profile-based intrusion detection are
the following:

• Counter: A nonnegative integer that may be incremented but not decre-
mented until it is reset by management action. Typically, a count of certain
event types is kept over a particular period of time. Examples include the
number of logins by a single user during an hour, the number of times a given
command is executed during a single user session, and the number of pass-
word failures during a minute.

• Gauge: A nonnegative integer that may be incremented or decremented.
Typically, a gauge is used to measure the current value of some entity.
Examples include the number of logical connections assigned to a user appli-
cation and the number of outgoing messages queued for a user process.

• Interval timer: The length of time between two related events. An example is
the length of time between successive logins to an account.

• Resource utilization: Quantity of resources consumed during a specified
period. Examples include the number of pages printed during a user session
and total time consumed by a program execution.

Given these general metrics, various tests can be performed to determine
whether current activity fits within acceptable limits. [DENN87] lists the following
approaches that may be taken:

• Mean and standard deviation
• Multivariate
• Markov process
• Time series
• Operational

The simplest statistical test is to measure the mean and standard deviation of a
parameter over some historical period. This gives a reflection of the average behav-
ior and its variability.The use of mean and standard deviation is applicable to a wide
variety of counters, timers, and resource measures. But these measures, by them-
selves, are typically too crude for intrusion detection purposes.

A multivariate model is based on correlations between two or more variables.
Intruder behavior may be characterized with greater confidence by considering
such correlations (for example, processor time and resource usage, or login fre-
quency and session elapsed time).

A Markov process model is used to establish transition probabilities among
various states. As an example, this model might be used to look at transitions
between certain commands.

M21_STAL7044_05_SE_C20.QXD 12/3/09 12:46 PM Page 20-12

20.2 / INTRUSION DETECTION 20-13

A time series model focuses on time intervals, looking for sequences of events
that happen too rapidly or too slowly. A variety of statistical tests can be applied to
characterize abnormal timing.

Finally, an operational model is based on a judgment of what is considered
abnormal, rather than an automated analysis of past audit records. Typically, fixed
limits are defined and intrusion is suspected for an observation that is outside the
limits. This type of approach works best where intruder behavior can be deduced
from certain types of activities. For example, a large number of login attempts over
a short period suggests an attempted intrusion.

As an example of the use of these various metrics and models, Table 20.2
shows various measures considered or tested for the Stanford Research Institute
(SRI) intrusion detection system (IDES) [DENN87, JAVI91, LUNT88].

The main advantage of the use of statistical profiles is that a prior knowledge of
security flaws is not required.The detector program learns what is “normal” behavior
and then looks for deviations. The approach is not based on system-dependent
characteristics and vulnerabilities.Thus, it should be readily portable among a variety
of systems.

Rule-Based Intrusion Detection

Rule-based techniques detect intrusion by observing events in the system and
applying a set of rules that lead to a decision regarding whether a given pattern of
activity is or is not suspicious. In very general terms, we can characterize all
approaches as focusing on either anomaly detection or penetration identification,
although there is some overlap in these approaches.

Rule-based anomaly detection is similar in terms of its approach and strengths
to statistical anomaly detection. With the rule-based approach, historical audit
records are analyzed to identify usage patterns and to generate automatically rules
that describe those patterns. Rules may represent past behavior patterns of users,
programs, privileges, time slots, terminals, and so on. Current behavior is then
observed, and each transaction is matched against the set of rules to determine if it
conforms to any historically observed pattern of behavior.

As with statistical anomaly detection, rule-based anomaly detection does not
require knowledge of security vulnerabilities within the system. Rather, the scheme
is based on observing past behavior and, in effect, assuming that the future will be
like the past. In order for this approach to be effective, a rather large database of
rules will be needed. For example, a scheme described in [VACC89] contains any-
where from 104 to 106 rules.

Rule-based penetration identification takes a very different approach to intru-
sion detection. The key feature of such systems is the use of rules for identifying
known penetrations or penetrations that would exploit known weaknesses. Rules
can also be defined that identify suspicious behavior, even when the behavior is
within the bounds of established patterns of usage. Typically, the rules used in these
systems are specific to the machine and operating system. The most fruitful
approach to developing such rules is to analyze attack tools and scripts collected on
the Internet. These rules can be supplemented with rules generated by knowledge-
able security personnel. In this latter case, the normal procedure is to interview

M21_STAL7044_05_SE_C20.QXD 12/3/09 12:46 PM Page 20-13

Table 20.2 Measures That May Be Used for Intrusion Detection

Measure Model Type of Intrusion Detected

Login and Session Activity

Login frequency by day and
time

Mean and standard
deviation

Intruders may be likely to log in during off-hours.

Frequency of login at different
locations

Mean and standard
deviation

Intruders may log in from a location that a particu-
lar user rarely or never uses.

Time since last login Operational Break-in on a “dead” account.

Elapsed time per session Mean and standard
deviation

Significant deviations might indicate masquerader.

Quantity of output to location Mean and standard
deviation

Excessive amounts of data transmitted to remote
locations could signify leakage of sensitive data.

Session resource utilization Mean and standard
deviation

Unusual processor or I/O levels could signal an
intruder.

Password failures at login Operational Attempted break-in by password guessing.

Failures to login from specified
terminals

Operational Attempted break-in.

Command or Program Execution Activity

Execution frequency Mean and standard
deviation

May detect intruders, who are likely to use different
commands, or a successful penetration by a legiti-
mate user, who has gained access to privileged
commands.

Program resource utilization Mean and standard
deviation

An abnormal value might suggest injection of a
virus or Trojan horse, which performs side-effects
that increase I/O or processor utilization.

Execution denials Operational model May detect penetration attempt by individual user
who seeks higher privileges.

File Access Activity

Read, write, create, delete
frequency

Mean and standard
deviation

Abnormalities for read and write access for individ-
ual users may signify masquerading or browsing.

Records read, written Mean and standard
deviation

Abnormality could signify an attempt to obtain sen-
sitive data by inference and aggregation.

Failure count for read, write,
create, delete

Operational May detect users who persistently attempt to access
unauthorized files.

20-14 CHAPTER 20 / INTRUDERS

system administrators and security analysts to collect a suite of known penetration
scenarios and key events that threaten the security of the target system.

A simple example of the type of rules that can be used is found in NIDX, an
early system that used heuristic rules that can be used to assign degrees of suspicion
to activities [BAUE88]. Example heuristics are the following:

1. Users should not read files in other users’ personal directories.
2. Users must not write other users’ files.

M21_STAL7044_05_SE_C20.QXD 12/3/09 12:46 PM Page 20-14

20.2 / INTRUSION DETECTION 20-15

3. Users who log in after hours often access the same files they used earlier.
4. Users do not generally open disk devices directly but rely on higher-level operat-

ing system utilities.
5. Users should not be logged in more than once to the same system.
6. Users do not make copies of system programs.

The penetration identification scheme used in IDES is representative of the
strategy followed. Audit records are examined as they are generated, and they are
matched against the rule base. If a match is found, then the user’s suspicion rating is
increased. If enough rules are matched, then the rating will pass a threshold that
results in the reporting of an anomaly.

The IDES approach is based on an examination of audit records. A weak-
ness of this plan is its lack of flexibility. For a given penetration scenario, there
may be a number of alternative audit record sequences that could be produced,
each varying from the others slightly or in subtle ways. It may be difficult to pin
down all these variations in explicit rules. Another method is to develop a higher-
level model independent of specific audit records. An example of this is a state
transition model known as USTAT [ILGU93]. USTAT deals in general actions
rather than the detailed specific actions recorded by the UNIX auditing mecha-
nism. USTAT is implemented on a SunOS system that provides audit records on
239 events. Of these, only 28 are used by a preprocessor, which maps these onto
10 general actions (Table 20.3). Using just these actions and the parameters that
are invoked with each action, a state transition diagram is developed that charac-
terizes suspicious activity. Because a number of different auditable events
map into a smaller number of actions, the rule-creation process is simpler.
Furthermore, the state transition diagram model is easily modified to accommo-
date newly learned intrusion behaviors.

Table 20.3 USTAT Actions versus SunOS Event Types

USTAT Action SunOS Event Type

Read open_r, open_rc, open_rtc, open_rwc, open_rwtc, open_rt, open_rw,
open_rwt

Write truncate, ftruncate, creat, open_rtc, open_rwc, open_rwtc, open_rt,
open_rw, open_rwt, open_w, open_wt, open_wc, open_wct

Create mkdir, creat, open_rc, open_rtc, open_rwc, open_rwtc, open_wc,
open_wtc, mknod

Delete rmdir, unlink

Execute exec, execve

Exit exit

Modify_Owner chown, fchown

Modify_Perm chmod, fchmod

Rename rename

Hardlink link

M21_STAL7044_05_SE_C20.QXD 12/3/09 12:46 PM Page 20-15

20-16 CHAPTER 20 / INTRUDERS

The Base-Rate Fallacy

To be of practical use, an intrusion detection system should detect a substantial
percentage of intrusions while keeping the false alarm rate at an acceptable level.
If only a modest percentage of actual intrusions are detected, the system provides
a false sense of security. On the other hand, if the system frequently triggers an
alert when there is no intrusion (a false alarm), then either system managers will
begin to ignore the alarms, or much time will be wasted analyzing the false
alarms.

Unfortunately, because of the nature of the probabilities involved, it is very
difficult to meet the standard of high rate of detections with a low rate of false
alarms. In general, if the actual numbers of intrusions is low compared to the
number of legitimate uses of a system, then the false alarm rate will be high unless
the test is extremely discriminating.A study of existing intrusion detection systems,
reported in [AXEL00], indicated that current systems have not overcome the prob-
lem of the base-rate fallacy. See Appendix 20A for a brief background on the math-
ematics of this problem.

Distributed Intrusion Detection

Until recently, work on intrusion detection systems focused on single-system stand-
alone facilities. The typical organization, however, needs to defend a distributed
collection of hosts supported by a LAN or internetwork. Although it is possible to
mount a defense by using stand-alone intrusion detection systems on each host, a
more effective defense can be achieved by coordination and cooperation among
intrusion detection systems across the network.

Porras points out the following major issues in the design of a distributed
intrusion detection system [PORR92]:

• A distributed intrusion detection system may need to deal with different audit
record formats. In a heterogeneous environment, different systems will
employ different native audit collection systems and, if using intrusion detec-
tion, may employ different formats for security-related audit records.

• One or more nodes in the network will serve as collection and analysis points
for the data from the systems on the network. Thus, either raw audit data or
summary data must be transmitted across the network. Therefore, there is a
requirement to assure the integrity and confidentiality of these data. Integrity
is required to prevent an intruder from masking his or her activities by altering
the transmitted audit information. Confidentiality is required because the
transmitted audit information could be valuable.

• Either a centralized or decentralized architecture can be used. With a central-
ized architecture, there is a single central point of collection and analysis of all
audit data. This eases the task of correlating incoming reports but creates a
potential bottleneck and single point of failure. With a decentralized architec-
ture, there are more than one analysis centers, but these must coordinate their
activities and exchange information.

M21_STAL7044_05_SE_C20.QXD 12/3/09 12:46 PM Page 20-16

20.2 / INTRUSION DETECTION 20-17

Central manager

LAN monitor Host Host

Agent
module

Router

WAN

Manager
module

Figure 20.2 Architecture for Distributed Intrusion Detection

A good example of a distributed intrusion detection system is one developed
at the University of California at Davis [HEBE92, SNAP91]. Figure 20.2 shows the
overall architecture, which consists of three main components:

• Host agent module: An audit collection module operating as a background
process on a monitored system. Its purpose is to collect data on security-
related events on the host and transmit these to the central manager.

• LAN monitor agent module: Operates in the same fashion as a host
agent module except that it analyzes LAN traffic and reports the results to the
central manager.

• Central manager module: Receives reports from LAN monitor and host
agents and processes and correlates these reports to detect intrusion.

The scheme is designed to be independent of any operating system or system
auditing implementation. Figure 20.3 [SNAP91] shows the general approach that is
taken. The agent captures each audit record produced by the native audit collection
system.A filter is applied that retains only those records that are of security interest.
These records are then reformatted into a standardized format referred to as the
host audit record (HAR). Next, a template-driven logic module analyzes the
records for suspicious activity.At the lowest level, the agent scans for notable events
that are of interest independent of any past events. Examples include failed file
accesses, accessing system files, and changing a file’s access control. At the next
higher level, the agent looks for sequences of events, such as known attack patterns
(signatures). Finally, the agent looks for anomalous behavior of an individual user
based on a historical profile of that user, such as number of programs executed,
number of files accessed, and the like.

M21_STAL7044_05_SE_C20.QXD 12/3/09 12:46 PM Page 20-17

20-18 CHAPTER 20 / INTRUDERS

OS audit
information

Filter

Host audit
record

Logic

Central
manager

Agent
protocol
machineTemplates

Notable activity
Signatures
Noteworthy sessions

Modifications

Alerts Query/
response

Figure 20.3 Agent Architecture

When suspicious activity is detected, an alert is sent to the central manager.
The central manager includes an expert system that can draw inferences from
received data. The manager may also query individual systems for copies of HARs
to correlate with those from other agents.

The LAN monitor agent also supplies information to the central manager.The
LAN monitor agent audits host-host connections, services used, and volume of traf-
fic. It searches for significant events, such as sudden changes in network load, the use
of security-related services, and network activities such as rlogin.

The architecture depicted in Figures 20.2 and 20.3 is quite general and flexible.
It offers a foundation for a machine-independent approach that can expand from
stand-alone intrusion detection to a system that is able to correlate activity from a
number of sites and networks to detect suspicious activity that would otherwise
remain undetected.

Honeypots

A relatively recent innovation in intrusion detection technology is the honeypot.
Honeypots are decoy systems that are designed to lure a potential attacker away
from critical systems. Honeypots are designed to

• divert an attacker from accessing critical systems
• collect information about the attacker’s activity
• encourage the attacker to stay on the system long enough for administrators

to respond

M21_STAL7044_05_SE_C20.QXD 12/3/09 12:46 PM Page 20-18

20.3 / PASSWORD MANAGEMENT 20-19

These systems are filled with fabricated information designed to appear valu-
able but that a legitimate user of the system wouldn’t access. Thus, any access to the
honeypot is suspect. The system is instrumented with sensitive monitors and event
loggers that detect these accesses and collect information about the attacker’s activ-
ities. Because any attack against the honeypot is made to seem successful, adminis-
trators have time to mobilize and log and track the attacker without ever exposing
productive systems.

Initial efforts involved a single honeypot computer with IP addresses designed
to attract hackers. More recent research has focused on building entire honeypot
networks that emulate an enterprise, possibly with actual or simulated traffic and
data. Once hackers are within the network, administrators can observe their behav-
ior in detail and figure out defenses.

Intrusion Detection Exchange Format

To facilitate the development of distributed intrusion detection systems that can
function across a wide range of platforms and environments, standards are needed
to support interoperability. Such standards are the focus of the IETF Intrusion
Detection Working Group. The purpose of the working group is to define data for-
mats and exchange procedures for sharing information of interest to intrusion
detection and response systems and to management systems that may need to inter-
act with them. The outputs of this working group include:

1. A requirements document, which describes the high-level functional require-
ments for communication between intrusion detection systems and requirements
for communication between intrusion detection systems and with management
systems, including the rationale for those requirements. Scenarios will be used to
illustrate the requirements.

2. A common intrusion language specification, which describes data formats that
satisfy the requirements.

3. A framework document, which identifies existing protocols best used for com-
munication between intrusion detection systems, and describes how the
devised data formats relate to them.

As of this writing, all of these documents are in an Internet-draft document stage.

20.3 PASSWORD MANAGEMENT

Password Protection

The front line of defense against intruders is the password system. Virtually all
multiuser systems require that a user provide not only a name or identifier (ID) but
also a password. The password serves to authenticate the ID of the individual log-
ging on to the system. In turn, the ID provides security in the following ways:

• The ID determines whether the user is authorized to gain access to a system.
In some systems, only those who already have an ID filed on the system are
allowed to gain access.

M21_STAL7044_05_SE_C20.QXD 12/3/09 12:46 PM Page 20-19

20-20 CHAPTER 20 / INTRUDERS

• The ID determines the privileges accorded to the user. A few users may have
supervisory or “superuser” status that enables them to read files and perform
functions that are especially protected by the operating system. Some systems
have guest or anonymous accounts, and users of these accounts have more
limited privileges than others.

• The ID is used in what is referred to as discretionary access control. For exam-
ple, by listing the IDs of the other users, a user may grant permission to them
to read files owned by that user.

THE VULNERABILITY OF PASSWORDS To understand the nature of the threat to
password-based systems, let us consider a scheme that is widely used on UNIX, in
which passwords are never stored in the clear. Rather, the following procedure is
employed (Figure 20.4a). Each user selects a password of up to eight printable
characters in length. This is converted into a 56-bit value (using 7-bit ASCII) that
serves as the key input to an encryption routine. The encryption routine, known as
crypt(3), is based on DES.The DES algorithm is modified using a 12-bit “salt” value.
Typically, this value is related to the time at which the password is assigned to the
user. The modified DES algorithm is exercised with a data input consisting of a
64-bit block of zeros. The output of the algorithm then serves as input for a second
encryption.This process is repeated for a total of 25 encryptions.The resulting 64-bit
output is then translated into an 11-character sequence. The hashed password is
then stored, together with a plaintext copy of the salt, in the password file for the
corresponding user ID. This method has been shown to be secure against a variety
of cryptanalytic attacks [WAGN00].

The salt serves three purposes:

• It prevents duplicate passwords from being visible in the password file. Even if
two users choose the same password, those passwords will be assigned at dif-
ferent times. Hence, the “extended” passwords of the two users will differ.

• It effectively increases the length of the password without requiring the user
to remember two additional characters. Hence, the number of possible pass-
words is increased by a factor of 4096, increasing the difficulty of guessing a
password.

• It prevents the use of a hardware implementation of DES, which would ease
the difficulty of a brute-force guessing attack.

When a user attempts to log on to a UNIX system, the user provides an ID and
a password. The operating system uses the ID to index into the password file and
retrieve the plaintext salt and the encrypted password. The salt and user-supplied
password are used as input to the encryption routine. If the result matches the
stored value, the password is accepted.

The encryption routine is designed to discourage guessing attacks. Software
implementations of DES are slow compared to hardware versions, and the use of
25 iterations multiplies the time required by 25. However, since the original design
of this algorithm, two changes have occurred. First, newer implementations of the
algorithm itself have resulted in speedups. For example, the Morris worm described
in Chapter 21 was able to do online password guessing of a few hundred passwords

M21_STAL7044_05_SE_C20.QXD 12/3/09 12:46 PM Page 20-20

20.3 / PASSWORD MANAGEMENT 20-21

User id

11 characters

salt

12 bits 56 bits

password

Load

Select

(a) Loading a new password

(b) Verifying a password

salt

•
•
•

Password File
E(pwd, [salt, 0])

E(pwd, [salt, 0])User id
User id

salt

Password File

crypt (3)

salt

hashed password

password

crypt (3)

compare

Figure 20.4 UNIX Password Scheme

in a reasonably short time by using a more efficient encryption algorithm than the
standard one stored on the UNIX systems that it attacked. Second, hardware per-
formance continues to increase, so that any software algorithm executes more
quickly.

Thus, there are two threats to the UNIX password scheme. First, a user can
gain access on a machine using a guest account or by some other means and then
run a password guessing program, called a password cracker, on that machine. The
attacker should be able to check hundreds and perhaps thousands of possible pass-
words with little resource consumption. In addition, if an opponent is able to obtain
a copy of the password file, then a cracker program can be run on another machine

M21_STAL7044_05_SE_C20.QXD 12/3/09 12:46 PM Page 20-21

20-22 CHAPTER 20 / INTRUDERS

at leisure. This enables the opponent to run through many thousands of possible
passwords in a reasonable period.

As an example, a password cracker was reported on the Internet in August
1993 [MADS93]. Using a Thinking Machines Corporation parallel computer, a
performance of 1560 encryptions per second per vector unit was achieved.With four
vector units per processing node (a standard configuration), this works out to
800,000 encryptions per second on a 128-node machine (which is a modest size) and
6.4 million encryptions per second on a 1024-node machine.

Even these stupendous guessing rates do not yet make it feasible for an
attacker to use a dumb brute-force technique of trying all possible combinations of
characters to discover a password. Instead, password crackers rely on the fact that
some people choose easily guessable passwords.

Some users, when permitted to choose their own password, pick one that is
absurdly short.The results of one study at Purdue University are shown in Table 20.4.
The study observed password change choices on 54 machines, representing approxi-
mately 7000 user accounts. Almost 3% of the passwords were three characters or
fewer in length. An attacker could begin the attack by exhaustively testing all possi-
ble passwords of length 3 or fewer. A simple remedy is for the system to reject any
password choice of fewer than, say, six characters or even to require that all pass-
words be exactly eight characters in length. Most users would not complain about
such a restriction.

Password length is only part of the problem. Many people, when permitted to
choose their own password, pick a password that is guessable, such as their own
name, their street name, a common dictionary word, and so forth.This makes the job
of password cracking straightforward. The cracker simply has to test the password
file against lists of likely passwords. Because many people use guessable passwords,
such a strategy should succeed on virtually all systems.

One demonstration of the effectiveness of guessing is reported in [KLEI90].
From a variety of sources, the author collected UNIX password files, containing
nearly 14,000 encrypted passwords.The result, which the author rightly characterizes

Table 20.4 Observed Password Lengths [SPAF92a]

Length Number Fraction of Total

1 55 .004

2 87 .006

3 212 .02

4 449 .03

5 1260 .09

6 3035 .22

7 2917 .21

8 5772 .42

Total 13787 1.0

M21_STAL7044_05_SE_C20.QXD 12/3/09 12:46 PM Page 20-22

20.3 / PASSWORD MANAGEMENT 20-23

as frightening, is shown in Table 20.5. In all, nearly one-fourth of the passwords were
guessed. The following strategy was used:

1. Try the user’s name, initials, account name, and other relevant personal infor-
mation. In all, 130 different permutations for each user were tried.

2. Try words from various dictionaries. The author compiled a dictionary of over
60,000 words, including the online dictionary on the system itself, and various
other lists as shown.

Table 20.5 Passwords Cracked from a Sample Set of 13,797 Accounts [KLEI90]

Type of Password Search Size Number of
Matches

Percentage of Passwords
Matched

Cost/Benefit
Ratioa

User/account name 130 368 2.7% 2.830

Character sequences 866 22 0.2% 0.025

Numbers 427 9 0.1% 0.021

Chinese 392 56 0.4% 0.143

Place names 628 82 0.6% 0.131

Common names 2239 548 4.0% 0.245

Female names 4280 161 1.2% 0.038

Male names 2866 140 1.0% 0.049

Uncommon names 4955 130 0.9% 0.026

Myths & legends 1246 66 0.5% 0.053

Shakespearean 473 11 0.1% 0.023

Sports terms 238 32 0.2% 0.134

Science fiction 691 59 0.4% 0.085

Movies and actors 99 12 0.1% 0.121

Cartoons 92 9 0.1% 0.098

Famous people 290 55 0.4% 0.190

Phrases and patterns 933 253 1.8% 0.271

Surnames 33 9 0.1% 0.273

Biology 58 1 0.0% 0.017

System dictionary 19683 1027 7.4% 0.052

Machine names 9018 132 1.0% 0.015

Mnemonics 14 2 0.0% 0.143

King James bible 7525 83 0.6% 0.011

Miscellaneous words 3212 54 0.4% 0.017

Yiddish words 56 0 0.0% 0.000

Asteroids 2407 19 0.1% 0.007

TOTAL 62727 3340 24.2% 0.053

aComputed as the number of matches divided by the search size. The more words that needed to be tested for
a match, the lower the cost/benefit ratio.

M21_STAL7044_05_SE_C20.QXD 12/3/09 12:46 PM Page 20-23

20-24 CHAPTER 20 / INTRUDERS

3. Try various permutations on the words from step 2. This included making the
first letter uppercase or a control character, making the entire word uppercase,
reversing the word, changing the letter “o” to the digit “zero,” and so on. These
permutations added another 1 million words to the list.

4. Try various capitalization permutations on the words from step 2 that were not
considered in step 3. This added almost 2 million additional words to the list.

Thus, the test involved in the neighborhood of 3 million words. Using the fastest
Thinking Machines implementation listed earlier, the time to encrypt all these
words for all possible salt values is under an hour. Keep in mind that such a thor-
ough search could produce a success rate of about 25%, whereas even a single hit
may be enough to gain a wide range of privileges on a system.

ACCESS CONTROL One way to thwart a password attack is to deny the opponent
access to the password file. If the encrypted password portion of the file is accessible
only by a privileged user, then the opponent cannot read it without already knowing
the password of a privileged user. [SPAF92a] points out several flaws in this strategy:

• Many systems, including most UNIX systems, are susceptible to unanticipated
break-ins. Once an attacker has gained access by some means, he or she may
wish to obtain a collection of passwords in order to use different accounts for
different logon sessions to decrease the risk of detection. Or a user with
an account may desire another user’s account to access privileged data or to
sabotage the system.

• An accident of protection might render the password file readable, thus com-
promising all the accounts.

• Some of the users have accounts on other machines in other protection domains,
and they use the same password.Thus, if the passwords could be read by anyone
on one machine, a machine in another location might be compromised.

Thus, a more effective strategy would be to force users to select passwords that are
difficult to guess.

Password Selection Strategies

The lesson from the two experiments just described (Tables 20.4 and 20.5) is that,
left to their own devices, many users choose a password that is too short or too easy
to guess. At the other extreme, if users are assigned passwords consisting of eight
randomly selected printable characters, password cracking is effectively impossible.
But it would be almost as impossible for most users to remember their passwords.
Fortunately, even if we limit the password universe to strings of characters that are
reasonably memorable, the size of the universe is still too large to permit practical
cracking. Our goal, then, is to eliminate guessable passwords while allowing the user
to select a password that is memorable. Four basic techniques are in use:

• User education
• Computer-generated passwords

M21_STAL7044_05_SE_C20.QXD 12/3/09 12:46 PM Page 20-24

20.3 / PASSWORD MANAGEMENT 20-25

• Reactive password checking
• Proactive password checking

Users can be told the importance of using hard-to-guess passwords and can be
provided with guidelines for selecting strong passwords. This user education strat-
egy is unlikely to succeed at most installations, particularly where there is a large
user population or a lot of turnover. Many users will simply ignore the guidelines.
Others may not be good judges of what is a strong password. For example, many
users (mistakenly) believe that reversing a word or capitalizing the last letter makes
a password unguessable.

Computer-generated passwords also have problems. If the passwords are quite
random in nature, users will not be able to remember them. Even if the password is
pronounceable, the user may have difficulty remembering it and so be tempted to
write it down. In general, computer-generated password schemes have a history of
poor acceptance by users. FIPS PUB 181 defines one of the best-designed auto-
mated password generators. The standard includes not only a description of the
approach but also a complete listing of the C source code of the algorithm.The algo-
rithm generates words by forming pronounceable syllables and concatenating them
to form a word. A random number generator produces a random stream of charac-
ters used to construct the syllables and words.

A reactive password checking strategy is one in which the system periodically
runs its own password cracker to find guessable passwords. The system cancels any
passwords that are guessed and notifies the user. This tactic has a number of draw-
backs. First, it is resource intensive if the job is done right. Because a determined
opponent who is able to steal a password file can devote full CPU time to the task
for hours or even days, an effective reactive password checker is at a distinct disad-
vantage. Furthermore, any existing passwords remain vulnerable until the reactive
password checker finds them.

The most promising approach to improved password security is a proactive
password checker. In this scheme, a user is allowed to select his or her own pass-
word. However, at the time of selection, the system checks to see if the password is
allowable and, if not, rejects it. Such checkers are based on the philosophy that,
with sufficient guidance from the system, users can select memorable passwords
from a fairly large password space that are not likely to be guessed in a dictionary
attack.

The trick with a proactive password checker is to strike a balance between
user acceptability and strength. If the system rejects too many passwords, users will
complain that it is too hard to select a password. If the system uses some simple
algorithm to define what is acceptable, this provides guidance to password crackers
to refine their guessing technique. In the remainder of this subsection, we look at
possible approaches to proactive password checking.

The first approach is a simple system for rule enforcement. For example, the
following rules could be enforced:

• All passwords must be at least eight characters long.
• In the first eight characters, the passwords must include at least one each of

uppercase, lowercase, numeric digits, and punctuation marks.

M21_STAL7044_05_SE_C20.QXD 12/3/09 12:46 PM Page 20-25

20-26 CHAPTER 20 / INTRUDERS

These rules could be coupled with advice to the user. Although this approach is
superior to simply educating users, it may not be sufficient to thwart password
crackers. This scheme alerts crackers as to which passwords not to try but may still
make it possible to do password cracking.

Another possible procedure is simply to compile a large dictionary of possible
“bad” passwords. When a user selects a password, the system checks to make sure
that it is not on the disapproved list. There are two problems with this approach:

• Space: The dictionary must be very large to be effective. For example, the dic-
tionary used in the Purdue study [SPAF92a] occupies more than 30 megabytes
of storage.

• Time: The time required to search a large dictionary may itself be large. In
addition, to check for likely permutations of dictionary words, either those
words most be included in the dictionary, making it truly huge, or each search
must also involve considerable processing.

Two techniques for developing an effective and efficient proactive password
checker that is based on rejecting words on a list show promise. One of these develops
a Markov model for the generation of guessable passwords [DAVI93]. Figure 20.5
shows a simplified version of such a model.This model shows a language consisting of
an alphabet of three characters. The state of the system at any time is the identity of
the most recent letter. The value on the transition from one state to another repre-
sents the probability that one letter follows another.Thus, the probability that the next
letter is b, given that the current letter is a, is 0.5.

a

c

b

0.0

0.0

0.5

0.5
0.2

0.4

1.0

0.4

0.0

M ! {3, {a, b, c} , T, 1 } where

0.0 0.5 0.5

T ! 0.2 0.4 0.4

1.0 0.0 0.0

e.g., string probably from this language: abbcacaba

e.g., string probably not from this language: aacccbaaa

Figure 20.5 An Example Markov Model

M21_STAL7044_05_SE_C20.QXD 12/3/09 12:46 PM Page 20-26

20.3 / PASSWORD MANAGEMENT 20-27

In general, a Markov model is a quadruple , where is the number
of states in the model, is the state space, is the matrix of transition probabilities,
and is the order of the model. For a kth-order model, the probability of making a
transition to a particular letter depends on the previous letters that have been gen-
erated. Figure 20.5 shows a simple first-order model.

The authors report on the development and use of a second-order model. To
begin, a dictionary of guessable passwords is constructed.Then the transition matrix
is calculated as follows:

1. Determine the frequency matrix f, where is the number of occurrences
of the trigram consisting of the ith, jth, and kth character. For example, the
password parsnips yields the trigrams par, ars, rsn, sni, nip, and ips.

2. For each bigram , calculate as the total number of trigrams beginning
with . For example, would be the total number of trigrams of the form
aba, abb, abc, and so on.

3. Compute the entries of T as follows:

The result is a model that reflects the structure of the words in the dictionary.
With this model, the question “Is this a bad password?” is transformed into the
question “Was this string (password) generated by this Markov model?” For a given
password, the transition probabilities of all its trigrams can be looked up. Some stan-
dard statistical tests can then be used to determine if the password is likely or
unlikely for that model. Passwords that are likely to be generated by the model are
rejected. The authors report good results for a second-order model. Their system
catches virtually all the passwords in their dictionary and does not exclude so many
potentially good passwords as to be user unfriendly.

A quite different approach has been reported by Spafford [SPAF92a,
SPAF92b]. It is based on the use of a Bloom filter [BLOO70]. To begin, we explain
the operation of the Bloom filter. A Bloom filter of order consists of a set of
independent hash functions , where each function maps a
password into a hash value in the range 0 to . That is,

where

th word in password dictionary
number of words in password dictionary

The following procedure is then applied to the dictionary:

1. A hash table of bits is defined, with all bits initially set to 0.
2. For each password, its hash values are calculated, and the corresponding bits

in the hash table are set to 1.Thus, if for some , then the sixty-
seventh bit of the hash table is set to 1; if the bit already has the value 1, it
remains at 1.

(i, j)Hi(Xj) = 67
k

N

D =
jXj =

Hi(Xj) = y 1 … i … k; 1 … j … D; 0 … y … N - 1

N - 1
H1(x), H2(x), Á , Hk(x)

kk

T1i, j, k2 =
f1i, j, k2
f1i, j, q2

f(a, b, q)ij
f(i, j, q)ij

f(i, j, k)

k
k

TA
m[m, A, T, k]

M21_STAL7044_05_SE_C20.QXD 12/3/09 12:46 PM Page 20-27

20-28 CHAPTER 20 / INTRUDERS

When a new password is presented to the checker, its hash values are calcu-
lated. If all the corresponding bits of the hash table are equal to 1, then the password
is rejected. All passwords in the dictionary will be rejected. But there will also be
some “false positives” (that is, passwords that are not in the dictionary but that pro-
duce a match in the hash table). To see this, consider a scheme with two hash func-
tions. Suppose that the passwords undertaker and hulkhogan are in the dictionary,
but is not. Further suppose that

If the password is presented to the system, it will be rejected even
though it is not in the dictionary. If there are too many such false positives, it will be
difficult for users to select passwords. Therefore, we would like to design the hash
scheme to minimize false positives. It can be shown that the probability of a false
positive can be approximated by:

or, equivalently,

where

number of hash functions
number of bits in hash table
number of words in dictionary

, ratio of hash table size (bits) to dictionary size (words)

Figure 20.6 plots as a function of for various values of . Suppose we have
a dictionary of 1 million words and we wish to have a 0.01 probability of rejecting a
password not in the dictionary. If we choose six hash functions, the required ratio is

. Therefore, we need a hash table of or about 1.2 MBytes of
storage. In contrast, storage of the entire dictionary would require on the order of
8 MBytes. Thus, we achieve a compression of almost a factor of 7. Furthermore,
password checking involves the straightforward calculation of six hash functions
and is independent of the size of the dictionary, whereas with the use of the full
dictionary, there is substantial searching.1

9.6 * 106
 bitsR = 9.6

kRP

R = N/D
D =
N =
k =

R L
-k

ln11 - P1/k2
P L a1 - ekD/Nbk

= a1 - ek/Rbk

xG%#jj98

H21undertaker2 = 998 H21hulkhogan2 = 665 H21xG%#jj982 = 998

H11undertaker2 = 25 H11hulkhogan2 = 83 H11xG%#jj982 = 665

xG%#jj98

k

1Both the Markov model and the Bloom filter involve the use of probabilistic techniques. In the case of
the Markov model, there is a small probability that some passwords in the dictionary will not be caught
and a small probability that some passwords not in the dictionary will be rejected. In the case of the
Bloom filter, there is a small probability that some passwords not in the dictionary will be rejected.Again
we see that taking a probabilistic approach simplifies the solution (e.g., see the Miller-Rabin algorithm in
Chapter 8).

M21_STAL7044_05_SE_C20.QXD 12/3/09 12:46 PM Page 20-28

20.4 / RECOMMENDED READING AND WEB SITES 20-29

20.4 RECOMMENDED READING AND WEB SITES

Two thorough treatments of intrusion detection are [BACE00] and [PROC01]. A more
concise but very worthwhile treatment is [SCAR07]. Two short but useful survey articles on
the subject are [KENT00] and [MCHU00]. [NING04] surveys recent advances in intrusion
detection techniques. [HONE01] is the definitive account on honeypots and provides a
detailed analysis of the tools and methods of hackers.

0.001

0.01

0.1

1

P
r[

fa
ls

e
po

si
tiv

e]

20151050

Ratio of hash table size (bits) to dictionary size (words)

4 hash functions

2 hash functions

6 hash functions

Figure 20.6 Performance of Bloom Filter

BACE00 Bace, R. Intrusion Detection. Indianapolis, IN: Macmillan Technical
Publishing, 2000.

HONE01 The Honeynet Project. Know Your Enemy: Revealing the Security Tools,Tactics,
and Motives of the Blackhat Community. Reading, MA:Addison-Wesley, 2001.

KENT00 Kent, S. “On the Trail of Intrusions into Information Systems.” IEEE
Spectrum, December 2000.

MCHU00 McHugh, J.; Christie, A.; and Allen, J. “The Role of Intrusion Detection
Systems.” IEEE Software, September/October 2000.

NING04 Ning, P., et al. “Techniques and Tools for Analyzing Intrusion Alerts.” ACM
Transactions on Information and System Security, May 2004.

PROC01 Proctor, P., The Practical Intrusion Detection Handbook. Upper Saddle River,
NJ: Prentice Hall, 2001.

SCAR07 Scarfone, K., and Mell, P. Guide to Intrusion Detection and Prevention Systems.
NIST Special Publication SP 800-94, February 2007.

M21_STAL7044_05_SE_C20.QXD 12/3/09 12:46 PM Page 20-29

20-30 CHAPTER 20 / INTRUDERS

Recommended Web Sites:

• CERT Coordination Center: The organization that grew from the computer
emergency response team formed by the Defense Advanced Research Projects
Agency. Site provides good information on Internet security threats, vulnerabilities,
and attack statistics.

• Packet Storm: Resource of up-to-date and historical security tools, exploits, and
advisories.

• Honeynet Project: A research project studying the techniques of predatory hackers
and developing honeypot products.

• Honeypots: A good collection of research papers and technical articles.

• Intrusion Detection Working Group: IETF group developing standards for exchange
formats and exchange procedures for intrusion detection systems. Includes RFCs and
Internet drafts.

• STAT Project: A research and open-source project at the U. of California, Santa
Barbara that focuses on signature-based intrusion detection tools for hosts, applica-
tions, and networks.

• Password Usage and Generation: NIST documents on this topic.

20.5 KEY TERMS, REVIEW QUESTIONS,AND PROBLEMS

Key Terms

audit record
Bayes’ Theorem
base-rate fallacy
honeypot

intruder
intrusion detection
intrusion detection exchange

format

password
rule-based intrusion detection
salt
statistical anomaly detection

Review Questions

20.1 List and briefly define three classes of intruders.
20.2 What are two common techniques used to protect a password file?
20.3 What are three benefits that can be provided by an intrusion detection system?
20.4 What is the difference between statistical anomaly detection and rule-based intrusion

detection?
20.5 What metrics are useful for profile-based intrusion detection?
20.6 What is the difference between rule-based anomaly detection and rule-based pene-

tration identification?
20.7 What is a honeypot?
20.8 What is a salt in the context of UNIX password management?
20.9 List and briefly define four techniques used to avoid guessable passwords.

M21_STAL7044_05_SE_C20.QXD 12/3/09 12:46 PM Page 20-30

20.5 / KEY TERMS, REVIEW QUESTIONS,AND PROBLEMS 20-31

Problems

20.1 In the context of an IDS, we define a false positive to be an alarm generated by an
IDS in which the IDS alerts to a condition that is actually benign. A false negative
occurs when an IDS fails to generate an alarm when an alert-worthy condition is in
effect. Using the following diagram, depict two curves that roughly indicate false
positives and false negatives, respectively.

Conservativeness
of signatures

Frequency
of alerts

More specific
or stricter

Less specific
or looser

20.2 The overlapping area of the two probability density functions of Figure 20.1 repre-
sents the region in which there is the potential for false positives and false negatives.
Further, Figure 20.1 is an idealized and not necessarily representative depiction of the
relative shapes of the two density functions. Suppose there is 1 actual intrusion for
every 1000 authorized users, and the overlapping area covers 1% of the authorized
users and 50% of the intruders.
a. Sketch such a set of density functions and argue that this is not an unreasonable

depiction.
b. What is the probability that an event that occurs in this region is that of an autho-

rized user? Keep in mind that 50% of all intrusions fall in this region.
20.3 An example of a host-based intrusion detection tool is the tripwire program. This is a

file integrity checking tool that scans files and directories on the system on a regular
basis and notifies the administrator of any changes. It uses a protected database of
cryptographic checksums for each file checked and compares this value with that
recomputed on each file as it is scanned. It must be configured with a list of files and
directories to check, and what changes, if any, are permissible to each. It can allow, for
example, log files to have new entries appended, but not for existing entries to be
changed. What are the advantages and disadvantages of using such a tool? Consider
the problem of determining which files should only change rarely, which files may
change more often and how, and which change frequently and hence cannot be
checked. Hence consider the amount of work in both the configuration of the pro-
gram and on the system administrator monitoring the responses generated.

20.4 A taxicab was involved in a fatal hit-and-run accident at night. Two cab companies,
the Green and the Blue, operate in the city. You are told that:
• 85% of the cabs in the city are Green and 15% are Blue.
• A witness identified the cab as Blue.
The court tested the reliability of the witness under the same circumstances that
existed on the night of the accident and concluded that the witness was correct in
identifying the color of the cab 80% of the time. What is the probability that the cab
involved in the incident was Blue rather than Green?

20.5 Explain the suitability or unsuitability of the following passwords:
a. YK 334 b. mfmitm (for “my favorite c. Natalie1 d. Washington

movie is tender mercies)
e. Aristotle f. tv9stove g. 12345678 h. dribgib

M21_STAL7044_05_SE_C20.QXD 12/3/09 12:46 PM Page 20-31

20-32 CHAPTER 20 / INTRUDERS

20.6 An early attempt to force users to use less predictable passwords involved computer-
supplied passwords. The passwords were eight characters long and were taken from
the character set consisting of lowercase letters and digits. They were generated by a
pseudorandom number generator with possible starting values. Using the technol-
ogy of the time, the time required to search through all character strings of length 8
from a 36-character alphabet was 112 years. Unfortunately, this is not a true reflection
of the actual security of the system. Explain the problem.

20.7 Assume that passwords are selected from four-character combinations of 26 alpha-
betic characters. Assume that an adversary is able to attempt passwords at a rate of
one per second.
a. Assuming no feedback to the adversary until each attempt has been completed,

what is the expected time to discover the correct password?
b. Assuming feedback to the adversary flagging an error as each incorrect character

is entered, what is the expected time to discover the correct password?
20.8 Assume that source elements of length are mapped in some uniform fashion into a

target elements of length . If each digit can take on one of values, then the number
of source elements is and the number of target elements is the smaller number .
A particular source element is mapped to a particular target element .
a. What is the probability that the correct source element can be

selected by an adversary on one try?
b. What is the probability that a different source element that results in

the same target element, , could be produced by an adversary?
c. What is the probability that the correct target element can be produced by an

adversary on one try?
20.9 A phonetic password generator picks two segments randomly for each six-letter pass-

word. The form of each segment is CVC (consonant, vowel, consonant), where
and .

a. What is the total password population?
b. What is the probability of an adversary guessing a password correctly?

20.10 Assume that passwords are limited to the use of the 95 printable ASCII characters
and that all passwords are 10 characters in length.Assume a password cracker with an
encryption rate of 6.4 million encryptions per second. How long will it take to test
exhaustively all possible passwords on a UNIX system?

20.11 Because of the known risks of the UNIX password system, the SunOS-4.0 documen-
tation recommends that the password file be removed and replaced with a publicly
readable file called /etc/publickey. An entry in the file for user A consists of a user’s
identifier , the user’s public key, , and the corresponding private key .This
private key is encrypted using DES with a key derived from the user’s login password

. When A logs in, the system decrypts to obtain .
a. The system then verifies that was correctly supplied. How?
b. How can an opponent attack this system?

20.12 The encryption scheme used for UNIX passwords is one way; it is not possible to
reverse it. Therefore, would it be accurate to say that this is, in fact, a hash code rather
than an encryption of the password?

20.13 It was stated that the inclusion of the salt in the UNIX password scheme increases the
difficulty of guessing by a factor of 4096. But the salt is stored in plaintext in the same
entry as the corresponding ciphertext password. Therefore, those two characters are
known to the attacker and need not be guessed. Why is it asserted that the salt
increases security?

20.14 Assuming that you have successfully answered the preceding problem and under-
stand the significance of the salt, here is another question. Wouldn’t it be possible to
thwart completely all password crackers by dramatically increasing the salt size to,
say, 24 or 48 bits?

20.15 Consider the Bloom filter discussed in Section 20.3. Define number of hash func-
tions; number of bits in hash table; and number of words in dictionary.D =N =

k =

Pa

PRaE(Pa, PRa)Pa

PRaPUaIDA

C = VV = 6 a, e, i, o, u7

yj

xk(xi Z xk)

yjxi

rprk
rp

k

215

M21_STAL7044_05_SE_C20.QXD 12/3/09 12:46 PM Page 20-32

APPENDIX 20A / THE BASE-RATE FALLACY 20-33

a. Show that the expected number of bits in the hash table that are equal to zero is
expressed as

b. Show that the probability that an input word, not in the dictionary, will be falsely
accepted as being in the dictionary is

c. Show that the preceding expression can be approximated as

20.16 Design a file access system to allow certain users read and write access to a file,
depending on authorization set up by the system. The instructions should be of the
format:

READ (F, User A): attempt by User A to read file F
READ (F, User A): attempt by User A to store a possibly modified copy of F

Each file has a header record, which contains authorization privileges; that is, a list of
users who can read and write.The file is to be encrypted by a key that is not shared by
the users but known only to the system.

APPENDIX 20A THE BASE-RATE FALLACY

We begin with a review of important results from probability theory, then demon-
strate the base-rate fallacy.

Conditional Probability and Independence

We often want to know a probability that is conditional on some event.The effect of the
condition is to remove some of the outcomes from the sample space. For example, what
is the probability of getting a sum of 8 on the roll of two dice, if we know that the face of
at least one die is an even number? We can reason as follows. Because one die is even
and the sum is even, the second die must show an even number. Thus, there are three
equally likely successful outcomes: (2, 6), (4, 4) and (6, 2), out of a total set of possibilities
of . The resulting
probability is .

Formally, the conditional probability of an event assuming the event has
occurred, denoted by , is defined as the ratio

where we assume is not zero.
In our example, and . The quantity

encompasses all of those outcomes in which the sum is 8 and at least one
die is even. As we have seen, there are three such outcomes. Thus,

. A moment’s thought should convince you that .
We can now calculate

Pr[B] = 3/4Pr[AB] = 3/36 = 1/12

Pr[AB]
B = {at least one die even}A = {sum of 8}

Pr[B]

Pr[A | B] =
Pr[AB]
Pr[B]

Pr[A| B]
BA

3/27 = 1/9
faces odd)] = 36-(3 * 3) = 27[36-(number of events with both

P L a1 - e-kD/Nbk

P = (1 - f)k

f = a1 -
k
N

 bD

M21_STAL7044_05_SE_C20.QXD 12/3/09 12:46 PM Page 20-33

20-34 CHAPTER 20 / INTRUDERS

This agrees with our previous reasoning.
Two events and are called independent if . It can eas-

ily be seen that if and are independent, and .

Bayes’Theorem

One of the most important results from probability theory is known as Bayes’ theo-
rem. First we need to state the total probability formula. Given a set of mutually
exclusive events , such that the union of these events covers all possi-
ble outcomes, and given an arbitrary event , then it can be shown that

(20.1)

Bayes’ theorem may be stated as follows:

(20.2)

Figure 20.7a illustrates the concepts of total probability and Bayes’ theorem.
Bayes’ theorem is used to calculate “posterior odds,” that is, the probability

that something really is the case, given evidence in favor of it. For example, suppose
we are transmitting a sequence of zeroes and ones over a noisy transmission line.
Let S0 and S1 be the events a zero is sent at a given time and a one is sent, respec-
tively, and R0 and R1 be the events that a zero is received and a one is received.
Suppose we know the probabilities of the source, namely and

. Now the line is observed to determine how frequently an error
occurs when a one is sent and when a zero is sent, and the following probabilities are
calculated: and . If a zero is received, we can thenPr[R1|S0] = pbPr[R0|S0] = pa

Pr[S0] = 1 - p
Pr[S1] = p

Pr[Ei|A] =
Pr[A|Ei]P[Ei]

Pr[A]
 =

Pr[A|Ei]P[Ei]

a
n

j=1
Pr[A|Ej]Pr[Ej]

Pr[A] = a
n

i=1
Pr[A|Ei]Pr[Ei]

A
E1, E2, Á , En

Pr[B|A] = Pr[B]Pr[A|B] = Pr[A]BA
Pr[AB] = Pr[A]Pr[B]BA

Pr[A | B] =
1/12
3/4

 =
1
9

A

E1 E2

E3 E4

! S0; 0 sent

! S1; 1 sent

! R0; 0 received

! R1; 1 received

(b) Example(a) Diagram to illustrate concepts

Figure 20.7 Illustration of Total Probability and Bayes’ Theorem

M21_STAL7044_05_SE_C20.QXD 12/3/09 12:46 PM Page 20-34

APPENDIX 20A / THE BASE-RATE FALLACY 20-35

calculate the conditional probability of an error, namely the conditional probability
that a one was sent given that a zero was received, using Bayes’ theorem:

Figure 20.7b illustrates the preceding equation. In the figure, the sample space is
represented by a unit square. Half of the square corresponds to S0 and half to S1, so

.Similarly,half of the square corresponds to R0 and half to R1, so
.Within the area representing S0,1/4 of that area corresponds to

R1, so . Other conditional probabilities are similarly evident.

The Base-Rate Fallacy Demonstrated

Consider the following situation. A patient has a test for some disease that comes
back positive (indicating he has the disease). You are told that

• The accuracy of the test is 87% (i.e., if a patient has the disease, 87% of the
time, the test yields the correct result, and if the patient does not have the dis-
ease, 87% of the time, the test yields the correct result).

• The incidence of the disease in the population is 1%.

Given that the test is positive, how probable is it that the patient does not have
the disease? That is, what is the probability that this is a false alarm? We need Bayes’
theorem to get the correct answer:

Thus, in the vast majority of cases, when a disease condition is detected, it is a
false alarm.

This problem, used in a study [PIAT91], was presented to a number of people.
Most subjects gave the answer 13%. The vast majority, including many physicians,
gave a number below 50%. Many physicians who guessed wrong lamented, “If you
are right, there is no point in making clinical tests!” The reason most people get it
wrong is that they do not take into account the basic rate of incidence (the base rate)
when intuitively solving the problem. This error is known as the base-rate fallacy.

How could this problem be fixed? Suppose we could drive both of the correct
result rates to 99.9%. That is, suppose we have and

. Plugging these numbers into the Equation (20.2), we get
. Thus, if we can accurately detect disease and accurately

detect lack of disease at a level of 99.9%, then the rate of false alarms will be 9%.
This is much better, but still not ideal. Moreover, again assume 99.9% accuracy, but
now suppose that the incidence of the disease in the population is only

. We then end up with a rate of false alarms of 91%. In actual situ-
ations, [AXEL00] found that the probabilities associated with intrusion detection
systems were such that the false alarm rate was unsatisfactory.

1/10000 = 0.0001

positive] = 0.09Pr[well/
well] = 0.999Pr[negative/

Pr[positive/disease] = 0.999

 =
(0.13)(0.99)

(0.87)(0.01) + (0.13)(0.99)
 = 0.937

 Pr[well/positive] =
Pr[positive/well]Pr[well]

Pr[positive/disease]Pr[disease] + Pr[positive/well]Pr[well]

Pr[R1/S0] = 0.25
Pr[R0] = Pr[R1] = 0.5
Pr[S0] = Pr[S1] = 0.5

Pr[S1 | R0] =
Pr[R0 | S1]Pr[S1]

Pr[R0 | S1]Pr[S1] + Pr[R0 | S0]Pr[S0]
 =

pa p
pa p + (1 - pb)(1 - p)

M21_STAL7044_05_SE_C20.QXD 12/3/09 12:46 PM Page 20-35

