I've seen a lot of issues on past assignments, please avoid these.

===

· Each file and each function must begin with a full comment block, separated by each other function comment block by 2-3 blank lines.

· Do not smash comments directly on end of line, tab or space over at least 1 tab width. Align nicely. Otherwise, when prints it is a blob!

· Always delete correctly. When you alloc singletons using new, delete as singleton. When alloc as an array, delete as an array. Anything else is UNDEFINED AND WILL RANDOMLY BLOW UP in most versions of C++.

 int * p = new int;

 delete p;

 int * q = new int[50];

 delete [] q;

· Don't init variables with bogus values. If a variable is to be set before it's used it does not need initialization and in fact this is inefficient.

· Put variable names in prototypes. Otherwise, hard to tell at a glance what prototype does. Also, most compilers pop up help that gets var names from prototypes. Without them, help is meaningless.

· Do not hard code file names or values that should be read from a file or input.

· Use shortcut operators whenever possible. x++ is much more efficient run-time than x = x + 1 Also, x += 5 is more efficient run-time than x = x + 5

· Never read into an unallocated (or underallocated pointer).
· Never use >> when you need a getline. >> stops at spaces or tabs or newlines.

· Understand use of ignore(). Ignore() is needed because >> leaves newline out in buffer, which can short circuit getline().

· Don't compare chars when you mean strcmp.

 if (data[0] == 'h' && data[1] == 'i' && data[2] = '!')

Is just silly and inefficient. Use strcmp and strncmp

· Use do-whiles if must enter loop at least once.

· Don't double toupper's work. Do it ONCE.

 cin >> choice;

 if(choice == 'y' || choice == 'Y')

 == instead ==

 cin >> choice;

 choice = toupper(choice);

 if(choice == 'Y')

 is cleaner

· Char should not crash numeric entry... Any crash in your program will cause a great reduction of points.

· No brute force error checking. User should always get option to retry

· Do NOT cross 80 col mark on your page, causes email lines to wrap and I need to heavily edit your file before it will compile which makes me grumpy and much more likely to find mistakes! That and it's just plain bad form.

· Don't turn in unless works! Late program gets better points than one not to spec.

· You may elaborate on the specs, but never remove a spec or alter it without permission. If the file says the numbers must be between 1 and 20. They must. Now, if you choose to embelish, that's fine, but don't deviate from specs.

· Better make string too big than too small. Bytes are cheap, but too short of a char array can cause crashes if overrun.

· DON'T COPY!!! If you are going to work with a team or partner, make DARN sure you both know your stuff and can defend it. You better make DARN sure I can't tell it's a copy. You can work together, but I reserve the right to zero any assignment I feal has been a reasonably identical copy. You have been officially forewarned.

· Do not use const literals. Always use const identifiers.

 int freqArray[20];

 ...

 for(int i=0; i < 20; i+++)...

 == instead ==

 const int ARRAY_SIZE = 20;

 int freqArray[ARRAY_SIZE];

 for(int i=0; i<ARRAY_SIZE; i++)

· Anything i comment on is fair game for next time. If I tell you don't do it, you damn well better stop.

· Delete only what you allocate. Don't allocate in one function and delete in another. This is bad form. A function that allocates memory should delete it unless its understood in the comment block that this is an assumption of the user. If not, the function that called that function should deallocate it. But NOT a function that is called from it.

