Group 1

(No Deprivation)

5

3

1

 $\overline{X}_1 = \frac{20}{5} = 4.00$

 $T_1 = 20$

 $n_1 = 5$

 $\sum X_0^2 = 100$

A. Data

Totals

 n_{j}

Means

Sum of squared

scores

siquared sum of scores divided

by n;

Total Sample

B. (I) = $\frac{T^2}{N} = \frac{(139)^2}{15} = 1288.07$ (II) = $\sum_{j=1}^{p} \left(\sum_{i=1}^{n_1} X_{ij}^2 \right) = 1831$ (III) = $\sum_{j=1}^{p} \left(\frac{T_j^2}{n_j} \right) = 1724.25$

 $\sum X_{i3}^2 = 1279$

df = C - 1 = 3 - 1 = 2

COMPUTATIONAL EXAMPLE OF THE SIMPLE ANALYSIS OF VARIANCE (DREAM EXAMPLE)

Group 3

(Much Deprivation)

21

15

17

18

Group 2

(Some Deprivation)

5

9

12

12 7

 $T_{2} = 48$

 $\sum X_{12}^2 = 452$

 $\frac{T_1^2}{n_1} = \frac{(20)^2}{5} = 80 \qquad \frac{T_2^2}{n_2} = \frac{(48)^2}{6} = 384 \qquad \frac{T_3^2}{n_2} = \frac{(71)^2}{4} = 1260.25$

 $T_1 = (7 + 5 + \cdots + 1)$ $T_2 = (5 + 9 + \cdots + 3)$ $T_3 = (21 + 15 + \cdots + 18)$

 $\overline{X}_2 = \frac{48}{6} = 8.00$ $\overline{X}_3 = \frac{71}{4} = 17.75$

df = N - 4 : 15 - 3 = 12 df = N - 1 = 15 - 1 = 14

 $SS_{\text{within}} = (II) - (III) = 1831 - 1724.25 = 106.75$ $SS_{\text{total}} = (II) - (I) = 1831 - 1288.07 = 542.93$ $MS_{\text{within}} = \frac{SS_{\text{within}}}{df_{\text{within}}} = \frac{106.75}{12} = 8.90$

 $MS_{\text{between}} = \frac{SS_{\text{between}}}{df_{\text{between}}} = \frac{436.18}{2} = 218.09$ D. Summary Table

Source ď SS MS Between groups 2 436.18 218.09 8.90 = 24.50** 8.90

Within groups 12 106.75 Total 14 542.93

Critical values (df = 2, 12) * $F_{.05} = 3.88, p < .05$ $^{\bullet\bullet}F_{01} = 6.93, p < .01$

C. $SS_{\text{between}} = (III) - (I) = 1724.25 - 1288.07 = 436.18$

THE ANALYSIS-OF-VARIANCE TABLE

Since several steps are involved in the computation of both the between- and withingroup variances, the entire set of results may be organized into an analysis-ofvariance (ANOVA) table.

Analysis-of-variance table

Source	Sum of squares	Degrees of freedom	Mean square (variance)	F
Between	$SSB = \sum_{i} n_{i} (\overline{X}_{i} - \overline{\overline{X}})^{2}$	c - 1	MSB = SSB/(c - 1)	MSB/MSW
Within	$SSW = \sum_{i} \sum_{j} (X_{ij} - \overline{X}_{j})^{2}$	n-c	-c MSW = SSW/ $(n-c)$	
Total	$SST = \sum_{i} \sum_{j} (X_{ij} - \overline{X})^2$	n – 1		

Analysis-of-variance table using computational formulas

Source	Sum of squares	Degrees of freedom	Mean square	F
Between	$SSB = \sum_{i} \frac{T_{i}^{2}}{n_{i}} - \frac{(GT)^{2}}{n}$	c - 1	SSB c - 1	MSB MSW
Within	$SSW = \sum_{i} \sum_{j} X_{ij}^{2} - \sum_{j} \frac{T_{i}^{2}}{n_{j}}$	п - с	$\frac{MSW}{n-c}$	
Total	$SST = \sum_{i} \sum_{j} X_{ij}^{2} - \frac{(GT)^{2}}{n}$	n – 1		

A consumer organization wanted to compare the price of a particular toy in three types of Stores in a suburban county: discount toy stores, department stores, and variety stores. A random sample of 5 discount toy stores, 6 department stores, and 5 variety stores was selected. The results were as follows:

Discount Toy	Department	Variety	
12	15	22	
14	18	27	
15	14	23	
16	18	25	
16	17	25	
	22		

Is there evidence of a difference in average price among the types of stores at $\alpha = 0.01$?