R as a calculator

R can be used as a powerful calculator by entering equations directly at the prompt in the command console. Simply type your arithmetic expression and press **ENTER**. R will evaluate the expressions and respond with the result. While this is a simple interaction interface, there could be problems if you are not careful.

Simple arithmetic expressions

The operators R uses for arithmetic are:

- **+** Addition
- **-** Subtraction
- **** Multiplication
- **/** Division
- **^** Exponentiation

Let's experiment with some arithmetic expressions.

- `4 + 8` will return the result 12
- `5 * 14` will return the result 70
- `7 / 4` will return the result 1.75
- `4 + 5 + 3` will return the result 12
- `4 ^ 3` will return the result 64

Operator precedence

More complex expressions can cause problems if you are not careful.

- `4 + 5 * 3` will return the result 19

Notice that the expression was not evaluated strictly left to right. R actually evaluated `5 * 3` and then added that result to 4. The R operator precedence rules caused this result. The table below shows the

<table>
<thead>
<tr>
<th>Operator</th>
<th>Description</th>
<th>Associativity</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>Exponent</td>
<td>Right to Left</td>
</tr>
<tr>
<td>-</td>
<td>Subtraction</td>
<td>Left to Right</td>
</tr>
<tr>
<td>%</td>
<td>Modulus</td>
<td>Left to Right</td>
</tr>
<tr>
<td>*</td>
<td>Multiplication</td>
<td>Left to Right</td>
</tr>
<tr>
<td>/</td>
<td>Division</td>
<td>Left to Right</td>
</tr>
<tr>
<td>>, <, <=, >=, ==, !=</td>
<td>Comparisons</td>
<td>Left to Right</td>
</tr>
<tr>
<td>!</td>
<td>Logical NOT</td>
<td>Left to Right</td>
</tr>
<tr>
<td>&</td>
<td>Logical AND</td>
<td>Left to Right</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Logical OR</td>
</tr>
<tr>
<td><-, ->></td>
<td>Rightward assignment</td>
<td>Left to Right</td>
</tr>
<tr>
<td><-, <-></td>
<td>Leftward assignment</td>
<td>Right to Left</td>
</tr>
<tr>
<td>=</td>
<td>Leftward assignment</td>
<td>Right to Left</td>
</tr>
</tbody>
</table>
various precedence rules R uses to evaluate expressions. The rules at the top of the table have highest precedence and are executed first. When operators have equal precedence, the expression is evaluated left to right.

If you meant to add 4 and 5, then multiply the result by 3, you will need to add parenthesis to the expression thereby imposing your operation order on evaluation process. In the case of this example, you could enter

\[(4 + 5) \times 3\] will return the result 18

Try another example:

\[4 + 3^2\] will return the result 13

While

\[(4 + 3)^2\] will return the result 49

You can also compute the root of a value by using fractional powers.

\[4^{0.5}\] will return the result 2
\[16^{0.25}\] will return the result 2

You can use parenthesis when you want to compute fractional roots that cannot be expressed as finite decimal numbers.

\[16^{(1/4)}\] will return the result 2
\[8^{(1/3)}\] will return the result 2

As you can see, it is helpful to use parenthesis to explicitly communicate the order that you want each operation to be evaluated. When you nest parenthesis, the arithmetic expression in the innermost parenthesis will be evaluated first, going left to right by operator precedence. All other evaluation will move outward from there, again, going left to right by operator precedence.

Here is an example of a more complex expression that uses parenthesis to explicitly control the evaluation process. The original expression is:

\[\sqrt[3]{\frac{435.4 \times 3.56}{(34 + 3)^2}}\]

You will enter this in the RStudio command console:

\[((435.4 \times 3.56) / (34 + 3)^2)^{1/3}\]

The result of this expression is: 1.042265

Notice how you can control the order of evaluation by using parenthesis.

Now you can accurately carry out most computations from the RStudio command console.

A note about computers and computing precision in R

While R is developed as a portable computing environment, you may discover that different computers will compute slightly different results for the same computational steps. In most instances, these differences are small and are artifacts of the processor in your computer. This behavior is different than differences caused by errors in your computations. When this occurs, ensure that all of your computational steps are correct before proceeding on. Normally, these types of differences will be small and should not impact your work.
Another different type of error involves the representational precision in a computer. In this case, the physical way computers store numbers is the culprit. Integers [whole numbers] are stored exactly as they are in computer memory. The various operators manipulate integers precisely. Decimal [float point] numbers are stored differently. Your computer stores an approximation of a decimal number rather than the exact value. For small decimal values, this approximation is very accurate. For non-finite decimals, like 1/3, the approximation is not exact. While the error in the approximation is very small, it can, in the right circumstance, cause computational issues. Here is a simple example that will demonstrate this behavior.

You know that
\[\sqrt{2} \times \sqrt{2} = 2 \] \[1\]
and that
\[\sqrt{2} \times \sqrt{2} - 2 = 0 \] \[2\]
If we compute expression [1] in R, we get
\[2^{(1/2)} \times 2^{(1/2)} \]
2
but expression [2] will result in
\[2^{(1/2)} \times 2^{(1/2)} - 2 \]
\[4.440892e-16 \]
This computational result is the actual difference between expression $2^{(1/2)} \times 2^{(1/2)}$ and the numeric value 2. This difference is very small and it will normally not impact your computations [this behavior is better than most top end calculators], but be aware of this precision issue when you conduct complex calculations.